
Computational Methods in Semantics

Gábor Recski

Ph.D. Dissertation

Supervisor:
András Kornai D.Sc.

Ph.D. School of Linguistics
Vilmos Bárdosi D.Sc.

Theoretical Linguistics Ph.D Program
Zoltán Bánréti C.Sc.

Department of Theoretical Linguistics
Eötvös Loránd University, Budapest

Budapest, 2016

Acknowledgements

First and foremost I would like to thank my advisor András Kornai for his ongoing support
of my studies and research over the past seven years, during which he supervised all work
related to both my masters theses and virtually all projects and assignments related to
my studies at ELTE and my work at the Institute for Computer Science (SZTAKI). Not
only was András always available and willing to spend his time and energy on lengthy
discussions of any topic, it was his efforts that secured a truly inspiring work environment
for my studies and research, sometimes against all odds.

For acquainting me with natural language processing, sharing their tremendous expe-
rience, teaching me to code, and for being two of the smartest and coolest people I know,
I’d like to thank former MOKK colleagues Péter Halácsy and Dániel Varga. I am forever
grateful for their patience and helpfulness.

I am thankful to the professors at the Department of Theoretical Linguistics and I
am particularly indebted to László Kálmán, who over the last 10 years has been my
professor of logic, semantics, syntax, computer science, computational linguistics, and
many other language-related topics. I thank him for the countless thought-provoking
discussions during his Tuesday seminars, after classes, on nyelveszforum, and at semantics
camp.

I would also like to say thanks to all my current and former colleagues at the Research
Group for Mathematical Linguistics: Judit Ács, Gábor Borbély, Márton Makrai, Dávid
Nemeskey, Katalin Pajkossy, and Attila Zséder. I feel truly honored to be working with a
team of such amazing people.

Contents

1 Introduction 5
1.1 Main contributions . 6

2 Theories of word meaning 7
2.1 Katz and Fodor’s semantics . 7
2.2 Graph-based models of semantics . 10

2.2.1 Quillian’s Semantic Memory Model 10
2.2.2 The KL-ONE family . 14
2.2.3 Abstract Meaning Representations 19

2.3 Montague-style theories . 20
2.4 CVS representations . 22

2.4.1 Vectors as word representations . 22
2.4.2 Vectors beyond the word level . 23

3 The 4lang system 25
3.1 The formalism . 25

3.1.1 Nodes . 26
3.1.2 The 0-edge . 26
3.1.3 1- and 2-edges . 26

3.2 Ambiguity and compositionality . 28
3.3 Reasoning . 30
3.4 Extra-linguistic knowledge . 34
3.5 Primitives of representation . 35
3.6 Theoretical significance . 38

4 Phrases 39
4.1 Dependency parsing . 39
4.2 From dependencies to graphs . 40

2

4.3 Utterances . 42
4.4 Issues . 42

4.4.1 Parsing errors . 42
4.4.2 Relationships among clauses . 45

4.5 Postprocessing dependencies . 46
4.5.1 Coordination . 46
4.5.2 Copulars and prepositions . 47

4.6 Evaluation . 48
4.7 Hungarian . 49

4.7.1 Dependencies . 51
4.7.2 Morphology . 52
4.7.3 Postprocessing . 52
4.7.4 Evaluation and issues . 55

5 Building definition graphs 59
5.1 Data sources . 59

5.1.1 Longman Dictionary of Contemporary English 59
5.1.2 Collins Cobuild Dictionary . 60
5.1.3 English Wiktionary . 60
5.1.4 Dictionaries of Hungarian . 61

5.2 Parsing definitions . 61
5.2.1 Preprocessing . 61
5.2.2 Constraining the parser . 62
5.2.3 Building definition graphs . 63

5.3 Expanding definition graphs . 63
5.4 Issues and evaluation . 64

5.4.1 Error analysis . 64
5.4.2 Non-standard definitions . 66
5.4.3 Word senses . 67
5.4.4 Hungarian . 68

6 Applications 71
6.1 Semantic similarity . 71

6.1.1 The STS task . 72
6.1.2 Architecture of the MathLingBudapest systems 72
6.1.3 Machine learning . 74
6.1.4 Word similarity in 4lang . 74

3

6.1.5 STS 2015 . 76
6.1.6 STS 2016 . 78
6.1.7 Difficulties . 78

6.2 Natural language understanding . 78

7 System architecture 80
7.1 Overview . 80
7.2 Requirements . 81

7.2.1 pymachine . 81
7.2.2 hunmorph and hundisambig . 81
7.2.3 Stanford Parser and CoreNLP . 82

7.3 dep_to_4lang . 82
7.4 dict_to_4lang . 83

7.4.1 Parsing dictionaries . 83
7.4.2 Preprocessing entries . 84
7.4.3 Parsing definitions . 84

7.5 The Lexicon class . 85
7.6 The Lemmatizer class . 86
7.7 The pymachine library . 86
7.8 Configuration . 87

8 Outlook 88
8.1 Outstanding issues . 88

8.1.1 True homonyms . 88
8.1.2 Alternate word forms, synonyms . 89

8.2 Sentence similarity and entailment . 89
8.3 Question Answering . 90
8.4 Parsing in 4lang . 91
8.5 Likelihood of 4lang representations . 92

Appendices 95

A Configuration file of the 4lang module 96

References 100

4

Chapter 1

Introduction

TODO: a kind of-ot is leszedni u1gy, mint a somethingot. A Zen-es pe1lda is fasza1bb
lesz

TODO: STS ML re1szletek, Kata instrukcio1i alapja1n, ro2viden
TODO: 2016-os submissionu2nk
TODO: Evalua1cio1 to2ke2letes parszokon, angolra e1s magyarra

This thesis presents computational methods for creating semantic representations of
natural language utterances and some early applications of such representations in various
computational semantics tasks. All software presented in this thesis is downloadable from
the 4lang repository at http://github.com/kornai/4lang and may be freely distributed
under an MIT license. The state of the 4lang codebase at the time of submission of this
thesis is preserved in the branch recski_thesis.

The thesis is structured as follows: Chapter 2 gives a short review of existing theories
of word meaning, with a special focus on their applicability to natural language processing.
Chapter 3 will provide an overview of the 4lang formalism for modeling meaning, but will
not attempt a full discussion, since the 4lang formalism is the product of joint work by half
a dozen researchers (Kornai et al., 2015), rather than being a contribution of this thesis.
Chapter 4 presents the dep_to_4lang pipeline, which creates 4lang-style meaning repre-
sentations from running text, Chapter 5 describes its application to monolingual dictionary
definitions, dict_to_4lang, used to create large concept lexica automatically. Chapter 6
presents applications of the text_to_4lang module to various tasks in Computational Se-
mantics, including a competitive system for measuring semantic textual similarity (STS)
(Recski & Ács, 2015) and an experimental framework for natural language understanding
(Nemeskey et al., 2013). Chapter 7 presents the architecture of the ca. 3000-line 4lang

5

http://github.com/kornai/4lang

codebase, serving both as an overview of how the main tools presented in this thesis are
implemented and as comprehensive software documentation. Finally, Chapter 8 discusses
our plans for future applications of the 4lang system including question answering and
recognizing textual entailment.

1.1 Main contributions

The main contributions of the present work are the pipelines for building semantic rep-
resentations from raw text and dictionary definitions, and their application to common
tasks in computational semantics, presented in Chapters 4, 5, and 6, respectively. Pa-
pers presenting parts of this thesis will be cited along the way. The 4lang principles
outlined in Chapter 3 are the result of collaboration with current and former members of
the Research Group for Mathematical Linguistics at the Hungarian Academy of Sciences:
Judit Ács, András Kornai, Márton Makrai, Dávid Nemeskey, Katalin Pajkossy, and Attila
Zséder. The systems presented in Chapters 4 and 5 constitute the author’s work with only
minor exceptions: the functions performing graph expansion (Section 5.3) are a result of
joint work with Gábor Borbély (Budapest University of Technology), and a parser for the
Collins Dictionary was contributed by Attila Bolevácz (Eötvös Loránd University). The
SemEval systems presented in Section 6.1 were built in collaboration with Judit Ács and
Katalin Pajkossy, the experimental systems described in Section 6.2 were implemented
together with Dávid Nemeskey and Attila Zséder.

6

Chapter 2

Theories of word meaning

This chapter gives a survey of approaches to modeling the semantics of natural language,
focusing on key ideas in representing word meaning. Our overview is neither complete,
nor does it provide a full introduction to any theory in particular, it is merely an overview
of major contributions to word meaning representation. We begin with a short overview
of the historically central Katz and Fodor’s Structure of a Semantic Theory (Section 2.1),
followed by reviews of graph-based models of word meaning in Section 2.2, in particular
the Semantic Memory Model of Quillian, the KL-ONE family of formalisms, and the
more recent Abstract Meaning Representation framework. An overview of Montagovian
approaches to word meaning is given in Section 2.3. Finally, in Section 2.4, we discuss
continuous vector space semantics, the approach to representing word meaning that is
currently most widely used in natural language processing.

2.1 Katz and Fodor’s semantics

In their paper The Structure of a Semantic Theory, Katz and Fodor (1963) set a lower
bound on what a theory of semantics must include. Their examples show three skills
of a competent speaker to be independent of their knowledge of grammar: (i) handling
ambiguity (the bill is large, but need not be paid), (ii) detecting anomaly (the paint is
silent) and (iii) paraphrasing (What does the note say? Does it say X?).

In setting an upper bound on the domain of semantics, they disown the issue of disam-
biguating between various readings of the same sentence (in isolation) based on context,
since that would require modeling all extralinguistic knowledge:

“...if a theory of setting selection is to choose the correct reading for the sentence
Our store sells alligator shoes, it must represent the fact that, to date, alligators

7

do not wear shoes, although shoes for people are sometimes made from alligator
skin”. (Katz & Fodor, 1963, p.178)

Katz and Fodor conclude that the upper bound on a semantic theory should be that of
semantic interpretation - a function that maps each sentence to a set of semantic repre-
sentations, one corresponding to each possible reading of the sentence. They make clear
that they impose this limit merely for practicality, because they “cannot in principle dis-
tinguish between the speaker’s knowledge of his language and his knowledge of the world,
because (...) part of the characterization of a LINGUISTIC ability is a representation of
virtually all knowledge about the world that speakers share.” (Katz & Fodor, 1963, p.179)
In Section 3.3 we shall also argue that any apparatus capable of representing the meaning
of natural language utterances must be capable of representing all of (naive, non-technical)
world knowledge.)

In describing the components of a semantic theory, Katz and Fodor define the lexicon
to contain separate entries for multiple senses of each word, and at the same time they
state that the grammar and the lexicon together are still insufficient for a deterministic
semantic interpretation, because of the multiple senses associated with most word forms.
A projection rule that selects the appropriate sense of each word form in a sentence is
postulated. This rule requires the senses of each word to be structured in the lexicon as
exemplified in Figure 2.1. In Chapter 3 we shall describe the 4lang representation of word
meaning that is radically monosemic, i.e. makes as little use of word senses as possible
and would map a word such as bachelor to a single representation that is compatible with
all uses of the word.

Note that the representation of lexical items in Figure 2.1 also includes a theory of
semantic primitives (human, male, animal, etc., Katz and Fodor refer to these as semantic
markers), much in the spirit of Prague-style phonological theory (Trubetzkoy, 1958). A
significant problem with this approach is that they have little to say about where the
set of all semantic markers available might come from, i.e. what the primitives of their
representation should be. All remaining lexical information about a word sense that is
not contained in the semantic markers, i.e. the parts in square brackets in Figure 2.1 are
called distinguishers. This distinction between the layers of markers and distinguishers is
not unlike that between Aristotle’s genus and differentia (Smith, 2015). Katz and Fodor
also claim that distinguishers are out of reach for a theory of semantics:

“The distinction between markers and distinguishers is meant to coincide with
the distinction between that part of the meaning of a lexical item which is
systematic for the language and that part which is not. In order to describe the

8

bachelor

noun

(Animal)

(Male)

[young fur
seal when
without
a mate

during the
breeding
time]

(Human)

[who has
the first
or lowest
academic
degree]

(Male)

[young
knight
serving

under the
standard
of another
knight]

[who
has never
married]

Figure 2.1: Decomposition of lexical items (Katz & Fodor, 1963, p.186)

systematicity in the meaning of a lexical item, it is necessary to have theoretical
constructs whose formal interrelations compactly represent this systematicity.
The semantic markers are such constructs. The distinguishers, on the other
hand, do not enter into theoretical relations within a semantic theory. The part
of the meaning of a lexical item that a dictionary represents by a distinguisher
is the part of which a semantic theory offers no general account.” (Katz &
Fodor, 1963, p.178)

What this last statement amounts to is that the (finite) set of semantic markers is a set of
universal primitives that is sufficient for representing the language-independent component
of word meaning. Then, if some non-English word is a hypernym of bachelor1 - man who
has never married, then its set of semantic markers must be a subset of the markers
in the entry for bachelor1. On the other hand, if we find a word in some language
that is the hyponym of bachelor1, e.g. a word w that means a man who has never
married and lives with his parents, we must conclude that our original representation for
bachelor1 was inadequate, since the components of its meaning beyond male and human,
whatever they may be, are shared with the entry w and should therefore be encoded by
semantic markers, not distinguishers. Since the potential absence of such a word w from all
human languages can only be accidental, we have to conclude that the distinction between
meaning encoded by markers and by distinguishers is also arbitrary. Bolinger (1965,

9

p.560) makes a similar argument, demonstrating that for virtually any component of any
distinguisher in Figure 2.1 it is possible to construct an example that justifies ‘promoting‘
that particular component to marker status, and concluding that “it is possible to do away
with the dualism by converting the distinguisher into a string of markers”. We shall return
to his examples in Section 3.5 when we argue for a theory of meaning representation that
encodes word meaning using language-independent primitives – and nothing else!

Finally, Katz and Fodor claim that word meaning representations may contain limita-
tions on the semantic content of elements with which the given word can combine. In their
example, an excerpt from The shorter Oxford English dictionary, the entry honest contains
the definition ‘... of women: chaste, virtuous’; such requirements they would represent by
adding constraints such as (Human) and (Female) on certain paths of the representation
(paths in the sense of Figure 2.1). Section 3.2 will discuss how such constraints may be
enforced by a 4lang-based system that lacks a notion of paths or senses.

2.2 Graph-based models of semantics

This section reviews popular systems for representing meaning using graphs – networks of
nodes and edges connecting them. We shall summarize the basic principles of Quillian’s
1960s Memory Model in Section 2.2.1, the KL-ONE family of Knowledge Representation
systems, widely used between the late 1970s and early 1990s, in Section 2.2.2, and finally
in Section 2.2.3 the most recent formalism of Abstract Meaning Representations which
has been gaining popularity in the past 4 years. All these systems share some common
principles of representations with each other and with 4lang, e.g. that each map lexical
items to nodes in some graph and use directed edges to represent asymmetric relationships
between them. Where they differ significantly is their elements of representation or their
notions of a syntax-semantics interface.

2.2.1 Quillian’s Semantic Memory Model

Memory model Quillian’s theory of word concepts (1968) is of particular interest to
us. Not only does he propose to represent word meaning by means of directed graphs of
concepts (much like the 4lang theory that serves as the basis of this thesis and will be
introduced in Chapter 3), it also defines graph configurations that are in many ways similar
to those in 4lang. Quillian also suggests that definitions of concepts should be learned
automatically, which is exactly what our module dict_to_4lang does (see Chapter 5).

Quillian proposes to encode meaning as a graph of nodes representing concepts, and

10

associative links between nodes, which may encode a variety of semantic relationships be-
tween these concepts. Figure 2.2 reproduces Quillian’s original presentation of associative
link types. Types 1 and 2, which stand for hypernymy and attribution respectively –
encode relationships that 4lang will treat as a single relation (along with predication, see
Section 3.1). Also, his links of type 5 and 6 are not unlike the binary configuration in
4lang graphs.

Quillian proposes two types of nodes: type nodes are unique for each concept and serve
to define them as networks of other concepts. Token nodes occur multiple times for each
concept when they themselves are used in definitions. In Section 6.2, when we review early
attempts at inferencing on 4lang representations, we shall see that this distinction is not
unlike that of active and static nodes made by (Nemeskey et al., 2013). Quillian organizes
nodes into planes, one for each type node and its definition graph, and emphasizes the
need to perform an exhaustive search of an arbitrary number of such planes for a complete
definition of any concept:

“a word’s full concept is defined in the model memory to be all the nodes
that can be reached by an exhaustive tracing process, originating at its initial,
patriarchal type node, together with the total sum of relationships among these
nodes specified by within-plane, token-to-token links (. . .) This information
will start off with the more “compelling” facts about machines, such as that
they are usually man-made, involve moving parts, and so on, and will proceed
“down” to less and less inclusive facts, such as that typewriters are machines,
and then eventually will get to much more remote information about machines,
such as the fact that a typewriter has a stop that prevents its carriage from
flying off everytime it is returned.” (Quillian, 1968, p.413, emphasis in the
original)

Quillian concludes that the bulk of information associated with a concept such as
machine must be an unstructured list of all concepts that refer to types of machines and
as such have edges directed towards tokens of machine. Thus a distinction is made, then
between the definition of some concept, i.e. the tokens accessible (in the digraph sense)
from its type node, and the network of all nodes connected to any token of the concept,
all potentially carrying information about the concept – in Section 3.2 we shall argue that
it is the latter that must be accessible to any language understanding mechanism.

Unlike Katz and Fodor, Quillian suggests not to represent the complex meaning of a
word by means of a hierarchical structure of word senses. Instead he suggests that the
unified network of all concepts that linked to either the type node or to some token node

11

Figure 2.2: Associative links (Quillian, 1968, p.412)

12

of the concept being defined should by itself serve as a store of all knowledge associated
with some word. He criticizes hierarchical structures of word senses commonly found in
explanatory dictionaries by pointing out that “the common elements within and between
various meanings of a word are many, and any outline designed to get some of these to-
gether under common headings must at the same time necessarily separate other common
elements, equally valid from some other point of view” (Quillian, 1968, p.419). Neverthe-
less, the memory model still makes use of word senses and the proposed mechanism for
building semantic representations from any given sentence still requires to select for each
word exactly one of several encoded senses. In Section 3.2 we shall propose a radically
monosemic approach to representing word meaning which abolishes the concept of multi-
ple word senses (with the exception of true homonyms such as the trunk of a car and the
trunk of an elephant).

Quillian also suggests that most concept definitions could be acquired algorithmically
given a small set of predefined primitives and definitions written in natural language:

“if one could manage to get a small set of basic word meanings adequately
encoded and stored in computer memory, and a workable set of combination
rules formalized as a computer program, he could then bootstrap his store
of encoded word meanings by having the computer itself “understand” sen-
tences that he had written to constitute the definitions of other single words”
(Quillian, 1968, p.416)

It is precisely this bootstrapping process that the dict_to_4lang module of the 4lang
library, described in detail in Chapter 5, performs using definitions from explanatory
dictionaries of English and Hungarian as well as a set of some 2,200 manually predefined
concepts.

Language understanding The above model of semantic memory serves as the basis of
a full-fledged language understanding system introduced in (Quillian, 1969). The process
the Teachable Language Comprehender (TLC) applies to language understanding involves
retrieving for each entity in the input text a list of concepts and entities in its memory
that the text may be mentioning. For these newly created copies of concepts, the TLC
also initializes pointers for each valency of the given concept: e.g. given a mention of
client, defined as seen in Figure 2.3, pointers to employer and employee are created as
such that should eventually be filled in the process of comprehending the full text. TLC
then conducts for each pointer a search for compatible properties present in its current
representation of the input, thus generating a list of candidates for the pointer. E.g.
given the phrase lawyer’s client, lawyer will eventually be found as compatible with the

13

Figure 2.3: Quillian’s definition of client (Quillian, 1969, p.462)

property employer of client, since both are linked to the property professional. This
iterative search process also incorporates anaphora resolution: pointers may be filled with
referents already present in the model of the current input. The next step involves trying
to justify connections from syntax: TLC’s memory also contains a set of form tests, each
of which encode some particular configuration that is typical of a semantic relation (e.g.
in this case “X’s Y” or “Y of X”) An example of a sample TLC session is reproduced from
(Quillian, 1969) in Figure 2.4.

Note that Quillian’s model is that of a teachable language comprehender; his account
also involves feedback given by human supervisors of the process, teaching the system
e.g. new form tests for each link of each concept as they occur. Such a system could
be trained through human labor to make highly reliable judgments as to whether some
entities in a text refer to a client and her employer. Human supervision would be necessary
for practically all concepts with arguments. The framework we propose in this thesis is
intended to be more robust by using more generic concept representations. The 4lang
representation of client may be as simple as work 1←− FOR 2−→ , but this is with the
intention of leaving open as many interpretations as possible (see Section 3.2 for more
discussion).

2.2.2 The KL-ONE family

The KL-ONE system (R. Brachman & Levesque, 1985) and its successors (Moser, 1983;
R. J. Brachman et al., 1983) are systems for Knowledge Representation (KR) rather than
models of linguistic semantics. They are of great historical significance in the field of
Artificial Intelligence and their formalisms are in many ways similar to both 4lang and

14

Figure 2.4: Sample session of the Teachable Language Comprehender (Quillian, 1969,
p.470)

15

Figure 2.5: A primitive concept in KL-ONE and its specification in JARGON (R. J. Brach-
man & Schmolze, 1985, p.183)

the other graph-based models mentioned in this section.
Representation Like many other approaches, KL-ONE adopts the tradition of rep-

resenting information as a network of nodes and links between them. Nodes in KL-ONE
networks represent Concepts, which are defined by three components: a list of super-
concepts, whose properties they inherit, a list of Roles, describing the relationships be-
tween the concept and other concepts, and structural descriptions, which describe the
relationship between Roles. RoleSets specify attributes that hold for all fillers occupying
some Role, e.g. that in case of the concept message, the sender must be a person; such
conditions are known as Value Restrictions. Structural Descriptions (SDs) of KL-ONE
concepts serve to characterize the relationship between Roles of a Concept, e.g. that an
important message is such that the sender is the supervisor of the recipient. A sample
KL-ONE concept is depicted in Figure 2.5, along with its equivalent in JARGON, an
English-like, human-readable specification language for KL-ONE.

KL-ONE explicitly forbids any violations of Value Restrictions, a clear symptom that
it is a formalism for the representation of (formalized) knowledge rather than a tool for
modeling language meaning directly. To account for exceptions, it is the inheritance of
properties between concepts that may be defined in a way that allows for potential viola-
tions; e.g. elephants are defined as four-legged-mammals, “unless you have information
to the contrary” (R. J. Brachman & Schmolze, 1985, p.190). The relationship between a
concept and its super-concepts is known in KL-ONE as subsumption. RoleSets may enter

16

in to a similar relationship called restriction, which results in the RoleSet of some con-
cept inheriting the properties of a RoleSet of some super-concept – similar to how classes
inherit functions from their superclasses in programming languages.

Semantic parsing The outline of a system mapping natural language input to KL-
ONE representation is also presented in (R. J. Brachman & Schmolze, 1985). We briefly
review its capabilities, since the main contribution of our thesis is also a system for map-
ping raw text to its meaning representation. Similar to the text_to_4lang system, which
we describe in Chapter 4, the natural language understanding system described by Brach-
man and Schmolze relies on a syntactic parser (Bobrow, 1979a), the output of which is
then used to build semantic representations. For the latter step, the PSI-KLONE tool
is used (Bobrow, 1979b), the output of which can then serve as the input to a compo-
nent responsible for handling pragmatics, bookkeeping of knowledge acquired in various
contexts, etc.

The main idea behind the PSI-KLONE system is that the syntactic representation
serving as its input is already encoded in a KL-ONE network, with Concepts such as
NP, RoleSets such as PP-modifier, etc. The system processes a sentence by fragments
received from the parser, providing feedback to it if the semantic interpretation fails and
the parsing hypothesis cannot be maintained. The interpretation process itself relies on
maps from words to lemmas and from lemmas to Concepts, e.g. teaches is mapped to
the TEACH-VERB concept via teach, professor is mapped to TEACHER-NOUN, etc. Concepts
retrieved this way are combined with the syntaxonomy, the KL-ONE network describing
the relationships between syntactic units, e.g. that VERB is a sub-concept of CLAUSE which
is a sub-concept of PHRASE. An example representation is shown in Figure 2.6.

A somewhat more recent account of PSI-KLONE (Sondheimer et al., 1984) sheds
light on the next steps of semantic interpretation. Frames are KL-ONE concepts that
describe a ‘semantically distinguishable type of phrase’; e.g. the frame associated with
the sending of messages is represented by the SEND-CLAUSE concept, whose Roles encode
the selection restrictions that apply to such an event and map syntactic functions to
semantic relations. For example, a SEND-CLAUSE must contain a TRANSMISSION-VERB and
MESSAGE-NOUN, among others, and semantic restrictions on each are imposed in the form
of Value Restrictions. The process of mapping a syntactic parse to a KL-ONE network is
therefore directly responsible for producing semantically felicitous representations, unlike
the text_to_4lang pipeline described in this thesis, which will produce 4lang graphs
describing any states-of-affairs based on its input. Slots of KL-ONE frames are tied to
concepts via rules of the form Paraphrase-as X. The frame depicted in Figure 2.7 provides
two example rules, stating that the indirect and direct object of a SEND-CLAUSE are to

17

Figure 2.6: KL-ONE representation of That professor teaches undergraduates about Lisp
on Thursday produced by PSI-KLONE (R. J. Brachman & Schmolze, 1985, p.214)

18

Figure 2.7: Example of a KL-ONE frame (Sondheimer et al., 1984, p.104)

be paraphrased as ADDRESSEE and MESSAGE, respectively. Semantic generalizations over
groups of frames can be captured via common super-concepts, known as abstract case
frames, e.g. all Concepts describing completion of an activity, such as come, reach, finish
or arrive, can be grouped under an abstract frame from which they inherit the potential
to accept time-modifiers.

2.2.3 Abstract Meaning Representations

Abstract Meaning Representation, or AMR (Banarescu et al., 2013), is a more recent
formalism for representing the meaning of linguistic structures as directed graphs. The
last few years have seen a rise in AMR-related work, including a corpus of AMR-annotated
text (Banarescu et al., 2013), several approaches to generating AMRs from running text
(Vanderwende et al., 2015; Peng et al., 2015; Pust et al., 2015), and various applications
to computational semantics (Pan et al., 2015; Liu et al., 2015).

Figure 2.8: AMR representation of The boy wants to go (Banarescu et al., 2013, p.179)

Nodes of AMR graphs represent concepts of two basic types: they are either English
words, or framesets from PropBank (Palmer et al., 2005), used to abstract away from
English syntax. PropBank framesets are essentially English verbs (or verb-particle con-

19

Figure 2.9: A PropBank frameset (Palmer et al., 2005, p.76)

structions) with a list of possible arguments along with their semantic roles; an example
frameset can be seen in Figure 2.9. Unlike the 4lang representation used in this thesis,
AMR also makes a distinction similar to Quillian’s type and token nodes by separating
nodes that represent some entity, event, property, etc. from nodes that are arguments
of some frameset, linking the latter with an instance relation to the former. The AMR
representation of the sentence The boy wants to go would hence be that in Figure 2.8 as
opposed to the 4lang representation in Figure 2.10. AMRs also handles a wide range
of phenomena that 4lang currently doesn’t: the formalism provides relations to encode
negation, modals, copulars, and questions. It also includes special relations to encode
named entities – in the broader sense, i.e. including not only proper names but also e.g.
dates, quantities, etc. The formalism accommodates a wide range of phenomena typical
of English, AMR creators admit that “AMR is heavily biased towards English. It is not
an Interlingua.” (Banarescu et al., 2013, p.179).

Figure 2.10: 4lang representation of The boy wants to go

2.3 Montague-style theories

A considerable amount of the literature on the semantics of natural language has in the
past few decades focused on Montagovian representations of meaning (Montague, 1970a,
1970b, 1973; Kamp, 1981; Groenendijk & Stokhof, 1991). The shared agenda of these
approaches is to provide a mapping from linguistic structures to logical formulae; the
bulk of actual work is concerned with handling particular portions of syntax. Nearly all

20

such accounts take Montague’s original treatment of word meaning for a given. It has
been shown that at least 84 percent of the information content of an average utterance is
encoded by word meaning (Kornai, 2012), yet most proposed interpretations of sentences
such as Every man loves a woman such that she loves him rarely have anything to say
about the concepts man, woman, or love. There are some generic principles of how word
meaning should be represented in logical formulae: nouns like man are typically thought
of as functions that decide for all objects of the world whether they are men or not, verbs
like love are thought of as describing an event such that for any event in the world one
can decide whether an act of loving has taken place. Such principles have little practical
value, however, when linking particular utterances to states-of-affairs. To our knowledge,
no lexicon with a substantive list of meaning postulates has ever benn built. In Chapter 5
we shall construct 4lang-style meaning representations for all headwords of monolingual
dictionaries of English.

If common nouns like giraffe and adjectives like blue are both seen as selecting a subset
of all objects in the world, then an NP such as blue giraffe might map to the intersection
of these subsets. The same mechanism fails for enormous fleas: the representation of
enormous must be updated to accommodate the fact that you cannot tell if some size
is enormous unless you know whose size it is (e.g. half an inch is enormous for a flea
but tiny for a giraffe). Clearly there does not exist a function that selects a universal
set of enormous fleas – what constitutes large may depend e.g. on the speaker’s previous
experience. Yet if we are to account for the fact that people can use this phrase successfully
in conversations, we must map enormous to some function that might take as its parameter
not only an entry encoding shared beliefs of speakers about defining properties of fleas, but
also some information regarding their beliefs of the size of fleas. It is tempting to handle
such a phenomenon by simply defining the interfaces with extra-linguistic knowledge, after
which the meaning of small blue giraffe can be a formula with parameters for speakers’
knowledge of what size range counts as small for a giraffe, what shades of color counts as
blue, perhaps even what set of characteristics would make something/somebody a giraffe.
Travis (1997) describes this approach in A Companion to the Philosophy of Language:

What some words say, or contribute to what is said in using them, varies
across speakings of them. Where this is so, the meaning of the words does two
things. First, it determines on just what facts about a speaking the semantic
contribution of the words so spoken depends. Second, it determines just how
their semantics on a speaking depends on these facts. Specifically, it determines
a specifiable function from values of those factors to the semantics the words
would have, if spoken where those values obtain. (Travis, 1997, p.92)

21

Proponents of Montagovian theories of semantics may claim that the subject of their
study (meaning in a narrow sense) is the component of the effect an utterance has on the
information state of speakers that is unchanged across “speakings”. Nevertheless, such a
representation of e.g. small blue giraffe must contain information about the meaning of
each of the individual concepts small, blue, and giraffe. It is one thing to disown the
issue of inter-speaker variation on which colors are blue, what sizes of giraffes are small,
etc., but surely what makes the phrase more informative than e.g. small blue animal is
that the variation among all giraffes is considerably smaller than the variation among all
animals. That MG accounts of semantics do not decompose the meaning of content words
is problematic because we have seen that to construct the meaning of even the simplest
kinds of phrases, one needs to account for how their meanings interact. Any mechanism
with a chance to interpret small giraffe or young giraffe will have to make reference to
a particular set of components of the meaning of giraffe, otherwise we cannot make
predictions about the size or age of the giraffe as we would about some unknown X
given the phrases small X and young X. The necessity of decomposing word meaning
has already been argued for by (Katz & Fodor, 1963), but the actual use of meaning
postulates in MG remains restricted to the resolution of technical problems caused by
handling intensionality; for a survey, see (Zimmermann, 1999). In Chapter 3 we shall
present a theory of meaning representation that encodes word meaning as a network of
concepts, making them accessible to mechanisms responsible for constructing the meaning
of larger structures.

2.4 CVS representations

The most widely used models of word meaning today are continuous vector spaces (CVS).
State-of-the-art systems in most standard NLP tasks rely on word embeddings, mappings
from words of a language to real-valued vectors, trained on datasets containing 106-1010

words. In this section we review key aspects of CVS semantics, which set the current
standard for representing word meaning (cf. Section 2.4.1). Remarkably, they do so using
elements of representations that – unlike 4lang representations – do not lend themselves
to compositionality in any obvious way (cf. Section 2.4.2).

2.4.1 Vectors as word representations

Methods used to obtain mappings from words to vectors are based on the distributional
hypothesis (Harris, 1954), which states that words are similar if they appear in similar

22

contexts. When training word embeddings on large bodies of unannotated text, the most
commonly used algorithms (Mikolov, Chen, et al., 2013; Pennington et al., 2014) will take
into account all contexts the word has occurred in (typically some fixed-size sequence of
surrounding words) and attempt to find vectors for each word that minimizes the dif-
ference between the predicted and observed probability of the word appearing in those
contexts. Embeddings trained this way can be evaluated by using them as the initial
layers of neural network models trained for a variety of NLP tasks such as named entity
recognition, chunking, POS-tagging, etc. (Collobert & Weston, 2008; Turian et al., 2010).
Word vectors are also often measured by their direct applicability to particular tasks such
as answering word analogy questions (Mikolov, Yih, & Geoffrey, 2013) or finding missing
words in text (Zweig et al., 2012). Analogical questions such as “man is to woman as king
is to X” can be answered successfully by taking the vectors associated with each word (~m,
~w, ~k for man, woman, and king, respectively) and finding the word whose vector has the
greatest cosine similarity to ~k + ~w− ~m. The fact that this strategy is relatively successful
indicates that the relational hypothesis holds to some extent: word representations trained
based on distribution are at least implicitly related to word meaning, making them can-
didates for use in computational semantics systems. Indeed, word embeddings have been
used successfully in state of the art systems for e.g. Semantic Role Labeling (Foland Jr &
Martin, 2015), Knowledge Base Construction (Nickel et al., 2015), and Semantic Textual
Similarity (Han et al., 2015). Vector representations are also practical for establishing a
connection between linguistic and non-linguistic data, a striking indication is the work
presented in (Karpathy et al., 2014), mapping text fragments to pictures for information
retrieval (image search).

2.4.2 Vectors beyond the word level

In this section we mention only a few examples that are relevant to our thesis. For a
generic overview of compositionality in CVS semantics, the reader is referred to Section 2
of (Grefenstette & Sadrzadeh, 2015). An example of training vectors that represent lin-
guistic units larger than a single word is the Compositional Vector Grammar (CVG) parser
introduced in (Socher, Bauer, et al., 2013), which outperforms by a significant margin the
state of the art in syntactic parsing by combining the standard PCFG approach with re-
cursive neural networks (RNNs) trained on each layer of a parse tree, assigning vectors
not only to words but all nonterminals of the grammar. The text_to_4lang system in-
troduced in Chapter 4 relies on CVGs for syntactic parsing, therefore we now provide a
very brief overview of them as presented in (Socher, Bauer, et al., 2013).

PCFG parsers such as that implemented by the Stanford Parser will return for some

23

Figure 2.11: Example of a syntactically untied RNN (Socher, Bauer, et al., 2013, p.459)

input sentence a ranked list of candidate parses. If a grammar is able to generate the cor-
rect parse tree for nearly all sentences, i.e. the correct parse can be expected to be among
the candidates returned for some sentence, then increasing parsing accuracy amounts to
improving the component responsible for ranking candidates based on their likelihood.
CVGs combine the power of PCFGs and RNNs by devising a method to rerank parse
trees in the output of a standard PCFG parser using neural networks trained on a tree-
bank. The core idea is that in calculating the score of a given syntactic derivation (parse
tree) for a sentence, the likelihood of each derivation step should be assigned based on
not only the observed frequency of the given structure, but rather its likeliness to cover
the particular sequence of words, and that this calculation should factor in word forms
via a distributional model, approximating the properties of rare or unseen words using
more frequent ones that appear in similar contexts. Syntactically untied networks (SU-
RNNs) learn separate parameters for each rewrite rule. The parameters for a rule of the
form A → BC are encoded by the syntactic triplet ((A, a), (B, b), (C, c)), where b and
c are vectors of Rn assigned to the non-terminals B and C, respectively, and A is com-
puted as f(W (B,C)([b, c])), where [b, c] is a vector in R2n obtained by concatenating b and
c, and W B,C is a matrix in Rn×2n which is learnt during the training process. f is the
element-wise nonlinearity function tanh. The process is summarized in Figure 2.11.

Compositionality of word vectors has also been explored in the context of Sentiment
Analysis (Socher, Perelygin, et al., 2013; Zhu et al., 2015) and Semantic Textual Similarity
(Sultan et al., 2015). The latter work assigns vectors to sentences by calculating the
componentwise average of all word vectors, Socher, Perelygin, et al. (2013) use Recursive
Neural Tensor Networks (RNTNs) to obtain vectors for each node in the parse tree of a
sentence.

24

Chapter 3

The 4lang system

This chapter describes the 4lang system for representing meaning using directed graphs
of concepts. Since the underlying theory is not the main contribution of this thesis,
but rather the work of half a dozen researchers over the course of 6 years, we shall not
attempt a full presentation of the 4lang principles. Instead we shall introduce the formal-
ism in Section 3.1, then continue to discuss some specific aspects relevant to this thesis.
4lang’s approach to multiple word senses is summarized in Section 3.2, Section 3.3 is
concerned with reasoning based on 4lang graphs. Treatment of extra-linguistic knowl-
edge is discussed in Section 3.4. Finally, Section 3.5 considers the primitives of the 4lang
representation and contrasts them with some earlier approaches mentioned in Chapter 2.

For a complete presentation of the theory of lexical semantics underlying 4lang the
reader is referred to (Kornai, 2010) and (Kornai, 2012). (Kornai et al., 2015) compares
4lang to contemporary theories of word meaning. 4lang is also the name of a manually
built dictionary1 mapping 2,200 English words to concept graphs (as well as their trans-
lations in Hungarian, Polish, and Latin, hence its name). The dictionary is described in
(Kornai & Makrai, 2013). For work on extending 4lang to include the top 40 languages
(by Wikipedia size), see (Ács et al., 2013).

3.1 The formalism

4lang represents the meaning of words, phrases and utterances as directed graphs whose
nodes correspond to language-independent concepts and whose edges may have one of three
labels, based on which they’ll be referred to as 0-edges, 1-edges, and 2-edges. (The 4lang
theory represents concepts as Eilenberg-machines (Eilenberg, 1974) with three partitions,
each of which may contain zero or more pointers to other machines and therefore also

1https://github.com/kornai/4lang/blob/master/4lang

25

https://github.com/kornai/4lang/blob/master/4lang

represent a directed graph with three types of edges. The additional capabilities offered by
Eilenberg-machines have not so far been applied by the author, some of them have not even
been implemented yet, therefore it makes more sense to consider the representations under
discussion as plain directed graphs.) First we shall discuss the nature of 4lang concepts
- represented by the nodes of the graph, then we’ll introduce the types of relationships
encoded by each of the three edge types.

3.1.1 Nodes

Nodes of 4lang graphs correspond to concepts. 4lang concepts are not words, nor do they
have any grammatical attributes such as part-of-speech (category), number, tense, mood,
voice, etc. For example, 4lang representations make no difference between the meaning of
freeze (N), freeze (V), freezing, or frozen. Therefore, the mapping between words of some
language and the language-independent set of 4lang concepts is a many-to-one relation.
In particular, many concepts will be defined by a single link to another concept that is its
hypernym or synonym, e.g. above 0−→ up or grasp 0−→ catch. Encyclopedic information
is omitted, e.g. Canada, Denmark, and Egypt are all defined as country (their definitions
also containing a pointer to an external resource, typically to Wikipedia). In general,
definitions are limited to what can be considered the shared knowledge of competent
speakers – e.g. the definition of water contains the information that it is a colorless,
tasteless, odorless liquid, but not that it is made up of hydrogen and oxygen. We shall
now go through the types of links used in 4lang graphs.

3.1.2 The 0-edge

The most common relation between concepts in 4lang graphs is the 0-edge, which rep-
resents attribution (dog 0−→ friendly); the IS_A relation (hypernymy) (dog 0−→ animal);
and unary predication (dog 0−→ bark). Since concepts do not have grammatical categories,
this uniform treatment means that the same graph can be used to encode the meaning
of phrases like water freezes and frozen water, both of which would be represented as
water 0−→ freeze.

3.1.3 1- and 2-edges

Edge types 1 and 2 connect binary predicates to their arguments, e.g. cat 1←− catch 2−→ mouse).
The formalism used in the 4lang dictionary explicitly marks binary (transitive) elements
– by using UPPERCASE printnames. The pipeline that we’ll introduce in Chapter 4 will

26

Figure 3.1: 4lang graph with two types of binaries.

HAS shirt 1←− HAS 2−→ collar

IN letter 1←− IN 2−→ envelope

AT bridge 1←− AT 2−→ river

CAUSE humor 1←− CAUSE 2−→ laugh

INSTRUMENT sew 1←− INSTRUMENT 2−→ needle

PART_OF leaf 1←− PART_OF 2−→ plant

ON smile 1←− ON 2−→ face

ER slow 1←− ER 2−→ speed

FOLLOW Friday 1←− FOLLOW 2−→ Thursday

MAKE bee 1←− MAKE 2−→ honey

Table 3.1: Most common binaries in the 4lang dictionary

not make use of this distinction, any concept can have outgoing 1- and 2-edges. Binaries
marked with uppercase are nevertheless clearly set apart from other concepts by the fact
that they are necessarily binary, i.e. they must always have exactly two outgoing edges.
We retain the uppercase marking for those binary elements that do not correspond to any
word in a given phrase or sentence, e.g. the meaning of the sentence Penny ate Leonard’s
food will be represented by the graph in Figure 3.12. The top ten most common binaries
used in 4lang are listed in Table 3.1 and examples are shown for each.

Given two concepts c1 and c2 such that c2 is a predicate that holds for c1, 4lang
will allow for one of two possible connections between them: c1

0−→ c2 if c2 is a one-
place predicate and c2

1−→ c1 if c2 is a two-place predicate. The mutual exclusiveness
of these two configurations is both counter-intuitive and unpractical for the 4lang-based

2Evidence for different patterns of linking predicates and their arguments could be obtained from
ergative languages (?, ?), these shall not be discussed here.

27

Figure 3.2: Revised 4lang graph with two types of binaries.

systems presented in this thesis. Two-place predicates often appear with a single argument
(e.g. John is eating), and representing such a statement as John 0−→ eat while the sentence
John is eating a muffin warrants John 1←− eat 2−→ muffin would mean that we consider the
relationship between John and eat dependent on whether we have established the object
of his eating. Therefore we choose to adopt a modified version of the 4lang representation
where the 0-connection holds between a subject and predicate regardless of whether the
predicate has another argument. The example graph in Figure 3.1 can then be revised to
obtain that in Figure 3.23.

The meaning of each 4lang concept is represented as a 4lang graph over other concepts
– a typical definition in the 4lang dictionary can be seen in Figure 3.3; this graph captures
the facts that birds are vertebrates, that they lay eggs, and that they have feathers and
wings. The generic applicability of the 4lang relations introduced in Section 3.1 have
the consequence that to create, understand, and manipulate 4lang representations one
need not make the traditional distinction between entities, properties, and events. The
relationships dog 0−→ bark and dog 0−→ inferior (Kornai, in preparation) can be treated in
a uniform fashion, when making inferences based on the definitions of each concept, e.g.
that dog 1←− MAKE 2−→ sound or that calling another person a dog is insulting.

3.2 Ambiguity and compositionality

4lang does not allow for multiple senses when representing word meaning, all occurrences
of the same word form – with the exception of true homonyms like trunk ‘the very long

3 Since the text_to_4lang pipeline presented in Chapter 4 assigns 4lang graphs to raw text based
on the output of dependency parsers that treat uniformly the relationship between a subject and verb
irrespective of whether the verb is transitive or not, the 4lang graphs we build will include a 1-edge
between all verbs and their subjects. We do not consider this a shortcoming: for the purposes of semantic
analysis we do not see the practicality of a distinction between transitive and intransitive verbs – we only
recognize the difference between the likelihood (based on data) of some verb taking a certain number of
arguments.

28

Figure 3.3: 4lang definition of bird.

nose of an elephant’ and trunk ‘the part at the back of a car where you can put bags,
tools etc’4 – must be mapped to the same concept, whose definition in turn must be
generic enough to allow for all possible uses of the word. As Jakobson famously noted,
such a monosemic approach might define the word bachelor as ‘unfulfilled in typical male
role’ (Fillmore, 1977). Such definitions place a great burden on the process responsible for
combining the meaning of words to create representations of phrases and utterances (see
Chapter 4), but it has the potential to model the flexibility and creativity of language use:

“we note here a significant advantage of the monosemic approach, namely that
it makes interesting predictions about novel usage, while the predictions of
the polysemic approach border on the trivial. To stay with the example, it is
possible to envision novel usage of bachelor to denote a contestant in a game
who wins by default (because no opponent could be found in the same weight
class or the opponent was a no-show). The polysemic theory would predict
that not just seals but maybe also penguins without a mate may be termed
bachelor – true but not very revealing.”(Kornai, 2010, p.182)

One typical consequence of this approach is that 4lang definitions will not distinguish
between bachelor and some concept w that means ‘unfulfilled male’ – both could be
defined in 4lang as e.g. male, LACK. This is not a shortcoming of the representation,
rather it is in accordance with the principles underlying it; the concepts unfulfilled and
male cannot be combined (e.g. to create a representation describing an unfulfilled male)
without making reference to some nodes of the graph representing the meaning of male; if
something is a ‘typical male role’, this should be indicated in the definition graph of male
(if only by inbound pointers), and without any such information, unfulfilled male cannot
be interpreted at all.

4All example definitions, unless otherwise indicated, are taken from the Longman Dictionary of Con-
temporary English (Bullon, 2003)

29

This does not mean that male cannot be defined without listing all stereotypes asso-
ciated with the concept. If the piece of information that ‘being with a mate at breeding
time’ is a typical male role – which is necessary to account for the interpretation of bach-
elor as ‘young fur seal when without a mate at breeding time’ – is to be accessed by some
inference mechanism, then it must be present in the form of some subgraph containing
the nodes seal, mate, male, and possibly others. Then, a 4lang-based natural language
understanding system that is presented with the word bachelor in the context of mating
seals for the first time may explore the neighborhood of these nodes until it finds this piece
of information as the only one that ‘makes sense’ of this novel use of bachelor. Note that
this is a model of novel language use in general. Humans produce and understand without
much difficulty novel phrases that most theories would label ‘semantically anomalous’. In
particular, all language use that is commonly labeled metaphoric involves accessing a lex-
ical element for the purpose of activating some of its meaning components, while ignoring
others completely. It is this use of language that 4lang wishes to model, as it is most
typical of everyday communication (Richards, 1937; Wilks, 1978; Hobbs, 1990).

Another 4lang principle that ensures metaphoric interpretation is that any link in a
4lang definition can be overridden. In fact, the only type of negation used in 4lang defi-
nitions, LACK, carries the potential to override elements that might otherwise be activated
when definitions are expanded: e.g. the definition of penguin, which undoubtedly con-
tains 0−→ bird, may also contain 1←− LACK 2−→ fly to block inference based on bird 0−→ fly.
That any element can freely be overridden ensures that novel language use does not nec-
essarily cause contradiction: “[T]o handle ‘the ship plowed through the sea’, one lifts the
restriction on ‘plow’ that the medium be earth and keeps the property that the motion is
in a substantially straight line through some medium” (Hobbs, 1990, p.55). Since a 4lang
definition of plow must contain some version of 2−→ earth, there must be a mechanism
allowing to override it and not make inferences such as sea 0−→ earth5.

3.3 Reasoning

The 4lang principles summarized so far place a considerable burden on the inferencing
mechanism. Given the possibility of defining all concepts using only a small set of primi-
tives, and a formalism that strictly limits the variety of connections between concepts, we
claim to have laid the groundwork for a semantic engine with the chance of understanding

5Note that such an inference must access some form of world knowledge in addition to the definition
of each concept: the definition of ship will contain 1←− ON 2−→ water (or similar), but to infer that this
makes it incompatible with the earth in the definition of plow one must also be aware that water and
earth cancel each other out in the context of where a vehicle runs

30

Figure 3.4: 4lang definition of mammal.

creative language use. Generic reasoning has not yet been implemented in 4lang, we only
present early attempts in Section 5.3 and some specific applications in Chapter 6. Here
we shall simply outline what we believe could be the main mechanisms of such a system.

The simplest kind of lexical inference in 4lang graphs is performed by following paths
of 0-edges from some concept to determine the relationships in which it takes part. The
concept mammal is defined in 4lang as an animal that has fur and milk (see Figure 3.4),
from which one can conclude that the relations 1←− HAS 2−→ milk and 1←− HAS 2−→ fur also
hold for all concepts whose definition includes 0−→ mammal (we shall assume that this simple
inference can be made when we construct 4lang definitions from dictionary definitions in
Chapter 5). Similar inferences can be made after expanding definitions, i.e. replacing
concept nodes with their definition graphs (see Section 5.3 for details). If the definition of
giraffe contains 0−→ mammal, to which we add edges 1←− HAS 2−→ fur and 1←− HAS 2−→ milk,
this expanded graph will allow us to infer the relations giraffe 1←− HAS 2−→ fur and
giraffe 1←− HAS 2−→ milk. As mentioned in the previous section, this process requires that
relations present explicitly in a definition override those obtained by inference: penguins
are birds and yet they cannot fly, humans are mammals without fur, etc.

A more complicated procedure is necessary to detect connections between nodes of
an expanded definition and nodes connected to the original concept. Recall Quillian’s
example in Section 2.2.1: given the phrase lawyer’s client his iterative search process will
eventually find lawyer to be compatible with the employer property of client, since both
are professionals. A similar process can be implemented for 4lang graphs; consider the
definition graphs for lawyer and client in Figures 3.5 and 3.6, built automatically from
definitions in the Longman dictionary, as described in Chapter 5, then pruned manually.
(These graphs, being the output of the dict_to_4lang system and not manual annotation,
have numerous issues: the word people in the Longman dictionary definition of lawyer
was not mapped to person, nor have the words advice and advise been mapped to the
same concept. After correcting these errors manually, nodes with identical names in the

31

Figure 3.5: Definition graph for lawyer

Figure 3.6: Definition graph for client

graph for lawyer’s client (Figure 3.7) can form the starting point of the inference process.
Let us now go over the various steps of inference necessary to reduce this graph to the
most informative representation of lawyer’s client. Note that we do not wish to impose
any logical order on these steps; they should rather be the ‘winners’ of a process that
considers many transformations in parallel and ends up keeping only some of them. A
simple example of such a system will be described in Section 6.2.

We should be able to realize that the person who is adviced (and is represented by)
the lawyer can be the same as the client who gets advice from the lawyer. To this
end we must be able to make the inference that X 1←− get 2−→ advice and advice 2−→ X are
synonymous. We believe a 4lang-based system should be able to make such an inference
in at least one of two independent ways. First, we expect our inference mechanism to
compute, based on the definitions of get and advice, that X 1←− get 2−→ advice entails
advice 2−→ X (and vice versa). Secondly, we’d like to be able to accommodate construc-
tions in the 4lang system (see also Section 8.4) that may explicitly pair the above two
configurations for some concepts but not for others (e.g. X 1←− get 2−→ drink should not
trigger drink 2−→ X).

We should also consider unifying the person node in person 1←− from 2−→ advice with
lawyer in advice 1−→ lawyer, which would once again require either some construction

32

Figure 3.7: Corrected graph for lawyer’s client

that states that when someone advises, then the advice is from her, or a generic rule
that can guess the same connection. Given these inferences, the two advice can also be
merged as likely referring to the same action, resulting in the final graph in Figure 3.8.
The nodes organization, company, and service have been omitted from the figure to
improve readability.

Figure 3.8: Inferred graph for lawyer’s client

33

3.4 Extra-linguistic knowledge

Chapter 3 of (Kornai, in preparation) argues that knowledge representation for the pur-
poses of natural language understanding requires a distinction between analytic and syn-
thetic knowledge, and that the 4lang theory is adequate to represent all analytic knowl-
edge. When we discuss inference in terms of 4lang representations, we only make reference
to knowledge that is clearly within the boundaries of the naive theories described by Kor-
nai. We emphasize that we do not even need to establish any particular piece of knowledge
as essential to our inferencing capabilities, just as in mathematics, where we do not need
to establish the truth of the axioms. Returning to one of the simplest examples above,
where bird 0−→ fly is overridden to accommodate both penguin 1←− LACK 2−→ fly and
penguin 0−→ bird, we need not decide whether the particular piece of information that
penguins cannot fly is part of the meaning of penguin. Clearly it is possible for one to
learn of the existence of penguins and that they are a type of bird without realizing that
they cannot fly, and this person could easily make the incorrect inference that they can.
Some components of word meaning, on the other hand, appear to be essential to the un-
derstanding of a particular concept, e.g. if a learner of English believes that nephew refers
to the child of one’s sibling, male or female (perhaps because in her native language a sin-
gle word stands for both nephews and nieces, and because she has heard no contradicting
examples), we say that she does not know the meaning of the word; nephew 0−→ male is
internal to the concept nephew in a way that penguin 1←− LACK 2−→ fly is to penguin.
This distinction is commonly made in semantics under the heading analytic vs. synthetic
knowledge, but imperfections in acquiring analytic knowledge are common and a normal
part of the language acquisition process. Carrying a conversation successfully only requires
that the participants’ representations of word meaning does not contradict each other in
a way relevant to the conversation at hand6. Static lexical resources such as LDOCE or
the 4lang concept dictionary must make decisions about which pieces of information to
include, and may do so based on some notion of how ‘technical‘ or ‘commonplace‘ they are.
A person’s ignorance of the fact that somebody’s nephew is necessarily male is probably
itself the result of one or several conversations about nephews that somehow remained
consistent despite his incomplete knowledge about how the word is typically used.

6This is also reflected in The Urban Dictionary’s definition of semantics: The study of discussing the
meaning/interpretation of words or groups of words within a certain context; usually in order to win some
form of argument (http://www.urbandictionary.com)

34

http://www.urbandictionary.com

3.5 Primitives of representation

In the following two chapters this thesis will present methods for 1) building 4lang rep-
resentations from raw text and 2) building 4lang definition graphs for virtually all words
based on monolingual dictionaries. Given these two applications, any text can be mapped
to 4lang graphs and nodes of any graph can be expanded to include their 4lang defini-
tions. Performing this expansion iteratively, all representations can be traced back to a
small set of concepts; in case the Longman Dictionary is used to build definition graphs,
the concepts listed in the 4lang dictionary will suffice to cover all of them, since it con-
tains all words of the Longman Defining Vocabulary (LDV), the set of all words used in
definitions of the Longman Dictionary (Boguraev & Briscoe, 1989). The set of concepts
necessary to define all others can be further reduced: we show in (Kornai et al., 2015) that
as few as 129 4lang concepts are enough to define all others in the 4lang dictionary, and
thus, via monolingual dictionaries, practically all words in the English language.

In response to Katz and Fodor’s markers and distinguishers (see Section 2.1), Bolinger
(1965) argues that any component of word meaning that Katz and Fodor may consider
to belong to the domain of distinguishers, and as such out of grasp for a semantic theory,
can be further decomposed into markers. He demonstrates his point by providing example
uses of the word bachelor that allow a competent speaker to disambiguate between the
senses listed by Katz and Fodor, but only based on properties of senses that are below
the last marker in K&F’s decomposition (cf. Figure 2.1). Since each of these examples
is self-contained argument for the existence of some semantic category, we shall use some
of them to demonstrate 4lang’s ability to decompose meaning. In Figure 3.9 we present
Bolinger’s first five examples along with his original explanation of how each necessitates
the introduction of some semantic marker:

Our account of these examples will be incomplete given the current limitations of
our implemented systems, e.g. its current lack of treatment for modality, negation, and
temporal relations. These already concern the first example: what is implemented of
4lang so far does not have a sophisticated system for representing temporal relations.
The concepts after and before are used in 4lang definitions to encode event structure,
e.g. the definition of discover contains know 0−→ after and effort 0−→ before. Whether
the inference indicated by Bolinger can be made depends on how the definition of marry
(Figure 3.10) is negated – given proper treatment, a man who has never married will
be established as one for whom (before 0−→) marriage 2←− IN 0−→ NOT holds, and become
should entail that for some predicate before 0−→ is false, rendering it incompatible with
the unmarried man interpretation of bachelor.

35

1. He became a bachelor. This rules out the ‘man who has never married’
– it is impossible to become one who has never done something. We can
extract the -ever part of never from the distinguisher and set up a marker
(Nonbecoming).

2. The seven-year-old bachelor sat on the rock. The definition ‘male who has
never married’ was deficient. It should have been something like ‘adult
male who has never married,’ and from that expanded distinguisher we
now extract the marker (Adult).

3. Lancelot was the unhappiest of all the bachelors after his wife died. This
seems to justify raising (Unmarried) to marker status and wipes out the
distinguisher on one of the branches: bachelor-noun-(Human)–(Male)-
(Adult)-(Non-becoming)-(Unmarried).

4. That peasant is a happy bachelor. Being a peasant is not compatible
with being a knight. There must be a marker of status lying around
somewhere. A knight has to be of gentle birth. Let us extract (Noble)
from the distinguisher (leaving the degree of nobility for the moment
undisturbed as still part of the knight’s distinguisher).

5. George is one bachelor who is his own boss. This eliminates the knight,
and turns ‘serving under’ into another status marker that might be called
(Dependent).

Figure 3.9: Examples and arguments for new markers (Bolinger, 1965, p.558-560)

Example 2 requires us to derive the incompatibility of adult with 7-year-old. Since
the definitions of adult in both Longman and en.wiktionary contain the term fully grown,
this inference requires us to make reference to knowledge about the average age at which
humans stop growing. The third example can be handled in 4lang similarly to the first: the
unmarried (adult) male reading of bachelor must entail that at no time in the past could

1←− IN 2−→ marriage have been true. Example 4 requires a contradiction to be detected
between knight and peasant – this can be straightforward given the right definition, but
given our method of building definitions from dictionary definitions, we cannot expect
our definition graphs to be as comprehensive as to include noble and LACK 0−→ noble in
the respective graphs for knight and peasant. Instead we should be able to infer these
relations from the definitions we do encounter: the Longman definition of knight: ‘a man
with a high rank in the past who was trained to fight while riding a horse’ should result in
the subgraph knight 1←− HAS 2−→ rank 0−→ high7, the definition of peasant: a poor farmer

7 Incidentally, to construct this graph we would also need to overcome a parsing error: the Stanford
Parser analyses this noun phrase as describing a man whose rank was trained and the rank is in the past.
Parser errors such as this one will be discussed in Sections 4.4.1 and 8.4

36

Figure 3.10: 4lang definition of marry.

who owns or rents a small amount of land, either in past times or in poor countries will
yield peasant 0−→ poor. These relations are not strictly incompatible, the original example
also depends upon the assumption that being a peasant entails being of low rank – we
have much better chances given a definition that makes this assumption itself, such as
the one in the English Wiktionary: A member of the lowly social class which toils on the
land (...). In the latter case, all that remains is making the connection between rank and
class (0−→ social), but the former should also allow us, given a probabilistic system, to
establish that a peasant is not likely to be a knight.

Finally, in Example 5, it is the incompatibility of ‘being one’s own boss’ and the ‘serving
under’ component of the young knight serving under the standard of another knight that
must be established. The Longman definition of boss: the person who employs you or who
is in charge of you at work will allow us to mapGeorge is his own boss to George 1⇐

2
employ,

contradicting George 0−→ serve 1←− under 2−→ X if the identity of X and George cannot be
established, in this case explicitly excluded by the phrase another knight. We refrain
from discussing the remaining 10 examples in (Bolinger, 1965). Details of the processes
presented here are yet to be worked out, but we have shown that each inference is possible
given our current set of semantic primitives.

37

3.6 Theoretical significance

This chapter provided a brief summary of the main principles behind the 4lang system
for representing the meaning of linguistic structures. Before we proceed to present a set of
tools for building and manipulating 4lang representations, as well as their applications to
some tasks in computational semantics, let us point out some of the most important char-
acteristics of 4lang representations that make it our formalism of choice in the remainder
of this thesis.

No categories 4lang does not differentiate between concepts denoting actions, entities,
attributes, etc., there are no categories of concepts equivalent to part-of-speech cate-
gories of words. This ensures, among other things, that words with a shared root are
typically mapped to the same concept, and that ultimately utterances with the same
information content can be mapped to inferentially identical 4lang representations.

No polysemy 4lang will only accommodate multiple senses of a word as a last resort.
Distant but related uses of the same word must be interpreted via the same generic
concept. This virtually eliminates the difficulty of word sense disambiguation.

Requires powerful inference The above principles require a mechanism for deriving
all uses of a word from minimalistic definitions. Such a mechanism may stand a real
chance at handling creative language use typical of everyday human communication
(and responsible for polysemy in the first place).

No failure of interpretation No combinations of concepts and connections between
them are forbidden by the formalism itself. Inference may judge certain states-
of-affairs impossible, but the formalism will not fail the interpretation process.

38

Chapter 4

Phrases

In this chapter we present our work on combining word representations like those described
in Chapter 3 to create graphs that encode the meaning of phrases. We relegate the task of
syntactic parsing to the state of the art Stanford Parser (DeMarneffe et al., 2006; Socher,
Bauer, et al., 2013). The pipeline presented in this chapter processes sets of dependency
triplets emitted by the Stanford Parser to create 4lang-style graphs of concepts (our future
plans to implement syntactic parsing in 4lang are outlined in Section 8.4). This chapter is
structured as follows: dependency parsing is briefly introduced in Section 4.1, the central
dep_to_4lang module which maps dependencies to 4lang graphs is presented in Sec-
tions 4.2 and 4.3. Major issues are discussed in Section 4.4, some solutions are presented
in Section 4.5, manual evaluation of the text_to_4lang system is provided in Section 4.6.
Finally, Section 4.7 presents the adaptation of text_to_4lang to Hungarian. The mod-
ule presented in this chapter is accessible via the text_to_4lang1 module of the 4lang
repository. Besides the ability to map chunks of running text to semantic representations,
text_to_4lang will see another application that is crucial to the system described in this
thesis: we process definitions of monolingual dictionaries to acquire word representations
for lexical items that are not covered by 4lang. The resulting module dict_to_4lang will
be presented in Chapter 5. The modules dep_to_4lang and dict_to_4lang are also pre-
sented in (Recski & Borbély, 2016), the adaptation to Hungarian is published in (Recski
et al., 2016).

1https://github.com/kornai/4lang/blob/master/src/text_to_4lang.py

39

https://github.com/kornai/4lang/blob/master/src/text_to_4lang.py

4.1 Dependency parsing

We use a robust, state of the art tool, the Stanford Parser2 to obtain dependency relations
that hold between pairs of words in an English sentence. Unlike dependency parsers
that have been trained on manually annotated dependency treebanks, the Stanford Parser
discovers relations by matching templates against its parse of a sentence’s constituent
structure (DeMarneffe et al., 2006). This approach is more robust, since phrase structure
parsers, and in particular the PCFG parser in the Stanford toolkit (Klein & Manning,
2003), are trained on much larger datasets than what is available to standard dependency
parsers.

The Stanford Dependency Parser is also capable of returning collapsed dependencies,
which explicitly encode relations between two words that are encoded in the sentence
by a function word such as a preposition or conjunction. E.g. in case of the sentence
I saw the man who loves you, standard dependency parse would contain the relation
nsubj(loves, who) but not nsubj(loves, man), even though man is clearly the sub-
ject of loves. Collapsed dependency parses contain these implicitly present dependencies
and are therefore more useful for extracting the semantic relationships between words in
the sentence. Furthermore, the Stanford Parser can postprocess conjunct dependencies:
in the sentence Bills on ports and immigration were submitted by Senator Brownback,
Republican of Kansas, the NP Bills on ports and immigration will at first be parsed into
the relations prep_on(Bills, ports) and cc_and(ports, immigration), then matched
against a rule that adds the relation prep_on(Bills, immigration). For our purposes
we enable both types of postprocessing and use the resulting set of relations (or triplets)
as input to the dep_to_4lang module, which uses them to build 4lang graphs and will
be introduced in Section 4.2.

The list of dependency relations extracted from a sentence (for a detailed description
of each dependency relation see (De Marneffe & Manning, 2008)) is clearly not intended
as a representation of meaning; it will nevertheless suffice for constructing good qual-
ity semantic representations because of the nature of 4lang relations: for sentences and
phrases such as Mary loves John or queen of France, 4lang representations are as simple
as Mary 1←− love 2−→ John and France 1←− HAS 2−→ queen which can be straightforwardly
constructed from the dependency relations nsubj(love, Mary), dobj(love, John), and
prep_of(queen, France). Any further details that one may demand of a semantic rep-
resentation, e.g. that John is an experiencer or that France does not physically possess
the queen, will be inferred from the 4lang definitions of the concepts love and queen, in

2http://nlp.stanford.edu/software/lex-parser.shtml

40

http://nlp.stanford.edu/software/lex-parser.shtml

the latter case also accessing the definitions of rule or country.

4.2 From dependencies to graphs

To construct 4lang graphs using dependency relations in the parser’s output, we created
manually a mapping from relations to 4lang subgraphs, assigning to each dependency
one of nine possible configurations (see Table 4.1). Additionally, all remaining relations
of the form prep_* and prepc_* are mapped to binary subgraphs containing a node
corresponding to the given preposition. To map words to 4lang concepts, we first lem-
matize them using the hunmorph morphological analyzer and the morphdb.en database
(Trón et al., 2005). Graph edges for each dependency are added between the nodes corre-
sponding to the lemmas returned by hunmorph. The full mapping from dependencies to
4lang-subgraphs is presented in Table 4.1. Figure 4.1 provides an example of how 4lang
subgraphs correspond to dependency triplets.

⇓

Figure 4.1: Constructing the graph for Harry shivered in the cold night air

4.3 Utterances

Dependency relations obtained from multiple sentences can be used to update graphs over
a single set of nodes, therefore the text_to_4lang pipeline presented in this chapter can
be applied to documents of arbitrary size. Some of our preliminary experiments showed
coreference resolution to be a significant challenge posed by processing several sentences
into a single concept graph; we have therefore extended the text_to_4lang module to

41

Dependency Edge
amod

w1
0−→ w2

advmod
npadvmod
acomp
dep
num
prt
nsubj

w1
1

⇀↽
0

w2
csubj
xsubj
agent
dobj

w1
2−→ w2

pobj
nsubjpass
csubjpass
pcomp
xcomp
poss

w2
1←− HAS 2−→ w1prep_of

tmod w1
1←− AT 2−→ w2

prep_with w1
1←− INSTRUMENT 2−→ w2

prep_without w1
1←− LACK 2−→ w2

prep_P w1
1←− P 2−→ w2

Table 4.1: Mapping from dependency relations to 4lang subgraphs

42

run the Stanford Coreference Resolution system (Lee et al., 2011) and use its output to
unify nodes in the concept graphs. An example is shown in Figure 4.2.

⇓

⇓

Figure 4.2: text_to_4lang processing of Harry snatched up his wand and scrambled to
his feet with coreference resolution

A proper treatment of complete utterances would require us to encode the logical
relationships that hold among clauses, signaled by linking constructions such as because,
unless, although. The Stanford parser detects the pairs of clauses between which these
words constitute dependencies, but there is no component in 4lang to handle them. Some
of these relationships could be handled straightforwardly, e.g. sentences expressing causal

43

relationships, such as if ... then ... constructions, could be mapped to X 1←− CAUSE 2−→ Y,
where X and Y are root nodes of the 4lang representations corresponding to each clause
in the sentence.

4.4 Issues

4.4.1 Parsing errors

Using the Stanford Parser for dependency parsing yields high-quality output, it is however
limited by the quality of the phrase structure grammar parser. Parsing errors constitute
a major source of errors in our pipeline, occasionally resulting in dubious semantic rep-
resentations that could be discarded by a system that integrates semantic analysis into
the parsing process. Our long-term plans include implementing such a process within
the 4lang framework using constructions (see Section 8.4), currently we rely on indepen-
dent efforts to improve the accuracy of phrase structure grammar parsers using semantic
information.

Results of a pioneering effort in this direction are already included in the latest versions
of the Stanford Parser (including the one used in the 4lang system) and was introduced in
Section 2.4.2: (Socher, Bauer, et al., 2013) improves the accuracy of the Stanford Parser
by using Compositional Vector Grammars, RNN-based models that learn for each terminal
rule Rn → R2n linear transformations that can be applied to pairs of word vectors of length
n to obtain an n×n matrix representing the nonterminal that is the result of applying the
given rule. The purpose of this model is to account for the semantic relationships between
words in the text that is to be parsed and words that have occurred in the training data.
E.g. the sentence He ate spaghetti with a spoon can be structurally distinguished from He
ate spaghetti with meatballs even if in the training phase the model has only had access
to [eat [spaghetti] [with a fork]], by grasping the similarity between the words spoon and
fork.

This phenomenon of incorrect PP-attachment is the single most frequent source of
anomalities in our output. For example, syntactic ambiguity in the Longman definition of
basement: a room or area in a building that is under the level of the ground, which has
the constituent structure in Figure 4.3 is incorrectly assigned the structure in Figure 4.4,
resulting in the incorrect semantic representation in Figure 4.5 (instead of the expected
graph in Figure 4.6). Most such ambiguities are easily resolved by humans based on lexical
facts (in this case e.g. that buildings with some underground rooms are more common
than buildings that are entirely under the ground, if the latter can be called buildings at

44

all) but it seems that such inferencing is beyond the capabilities even for parsers using
word embeddings. As already discussed in Section 3.3, such deductions can be made based
on 4lang representations.

NP

S’

that is under the level of the ground

NP

PP

NP

a buildingin

NP

a room or area

Figure 4.3: Constituent structure of a room or area in a building that is under the level of
the ground

NP

PP

NP

S’

that is under the level of the ground

NP

a buildingin

NP

a room or area

Figure 4.4: Incorrect parse tree for a room or area in a building that is under the level of
the ground

Figure 4.5: Incorrect definition graph for basement.

45

Figure 4.6: Expected definition graph for basement.

4.4.2 Relationships among clauses

The text_to_4lang system does not currently detect relationships between multiple
clauses of a sentence expressed by conjunctions such as because, unless, although, etc.,
since they do not appear as syntactic dependency relations in the output of dependency
parsers (unlike e.g. clausal modifiers of noun phrases, which are processed by the Stanford
Parser to obtain e.g. nsubj(appears, liquid) f−→ rom the definition of perspiration:
liquid that appears on your skin when you are hot or nervous. Such conjunctions should be
treated on a case-by-case basis by constructions enforcing simple rules. Such a construc-
tion might state that for some sentence X, because Y, the 4lang graphs corresponding to
X and Y should be joined by 1←− CAUSE 2−→ . The definition of perspiration could then
map to the graph in Figure 4.7.

4.5 Postprocessing dependencies

Some of the typical issues of the graphs constructed by the process described in Section 4.2
can be resolved by postprocessing the dependency triplets in the parser’s output before
passing them to dep_to_4lang. Currently the dependency_processor module handles
two configurations: coordination (Section 4.5.1) and copular sentences (Section 4.5.2)

4.5.1 Coordination

One frequent class of parser errors related to PP-attachment (cf. Section 4.4.1) involve
constituents modifying a coordinated phrase which are analyzed as modifying only one of
the coordinated elements. E.g. in the Longman entry casualty - someone who is hurt or
killed in an accident or war, the parser fails to detect that the PP in an accident or war
modifies the constituent hurt or killed, not just killed. Determining which of two possible
parse trees is the correct one is of course difficult - once again, casualty may as well mean

46

Figure 4.7: Definition graph built from perspiration: liquid that appears on your skin
because you are hot or nervous

someone who is killed in an accident or war or someone who is hurt (in any way) and that
such a misunderstanding is unlikely in real life is a result of inference mechanisms well
beyond what we are able to model.

Our simple attempt to improve the quality of graphs built is to process all pairs of
words between which a coordinating dependency holds (e.g. conj_and, conj_or, etc.)
and copy all edges from each node to the other. This could hardly be called a solution, as
it may introduce dependencies incorrectly, but in practice it has proved an improvement.
In our current example this step enables us to obtain missing dependencies and thus build
the correct 4lang graph (see Figure 4.8).

4.5.2 Copulars and prepositions

Two further postprocessing steps involve copular constructions containing prepositional
phrases. In simple sentences such as The wombat is under the table, the parser returns
the pair of dependencies nsubj(is, wombat) and prep_under(is, table), which we
use to generate prep_under(wombat, table). Similarly, when PPs are used to modify
a noun, such as in the Longman definition of influenza: an infectious disease that is
like a very bad cold, for which the dependency parser returns, among others, the triplets
rcmod(disease, is) and prep_like(is, cold), we let a simple rule add the triplet

47

⇓

Figure 4.8: Definition graph built from: casualty - someone who is hurt or killed in an
accident or war, with extra dependencies added by the postprocessor

prep_like(disease, cold) (see Figure 4.9). In both cases we finish by removing the
copular verb in order to simplify our final representation.

4.6 Evaluation

We performed manual evaluation of the text_to_4lang module on a sample from the
UMBC Webbase corpus (Han et al., 2013), a set of 3 billion English words based on a 2007
webcrawl performed as part of the Stanford Webbase3 project. We used the GNU utility
shuf to extract a random sample of 20 sentences, which we processed with text_to_4lang
and examined manually both the final output and the dependencies output by the Stanford
Parser in order to gain a full understanding of each anomaly in the graphs created. The
sentences in this corpus are quite long (25.5 words/sentence on average, compared to
18.8 of the Wall Street Journal section of the Penn Treebank), therefore most graphs are
affected by multiple issues; we shall now take stock of those that affected more than one
sentence in our sample.

Parser errors remain the single most frequent source of error in our final 4lang graphs:
7 sentences in our sample of 20 were assigned dependencies erroneously. 3 of these cases
are related to PP-attachment (see Section 4.4.1). Parser errors are also virtually the only
issue that cause incorrect edges to be added to the final graph – nearly all remaining
issues will result in missing connections only. The second largest source of errors in this

3http://dbpubs.stanford.edu:8091/~testbed/doc2/WebBase/

48

http://dbpubs.stanford.edu:8091/~testbed/doc2/WebBase/

⇓

Figure 4.9: Postprocessing the definition an infectious disease that is like a very bad cold

dataset are related to connectives between clauses that our pipeline does not currently
process (see Section 4.3). Our sample contains 6 such examples, including pairs of clauses
connected by that (3x), unless, regardless, etc. The output of our pipeline for these
sentences typically consists of two graphs that are near-perfect representations of the
two clauses, but are not connected to each other in any way – an example is shown in
Figure 4.10, we shall briefly return to this issue in Section 8.1.

There are three more error classes to be mentioned, each of which affects three sentences
in our sample. The first are recall errors made by the Stanford Coreference Resolution
system: in these cases connections of a single concept in the final graph are split among two
or more nodes, since our pipeline failed to identify two words as referring to the same entity
(Figure 4.11 shows an example). The second group of errors is caused by sentences that are
assigned the vmod dependency. This relation holds between a noun and a reduced non-final
verbal modifier, which “is a participial or infinitive form of a verb heading a phrase (which
may have some arguments, roughly like a VP). These are used to modify the meaning of
an NP or another verb.”(DeMarneffe et al., 2006, p.10). This dependency is not processed
by dep_to_4lang, since it may encode the relation between a verb and either its subject
or object; e.g. the example sentences in the Stanford Dependency Manual, Truffles picked
during the spring are tasty and Bill tried to shoot, demonstrating his incompetence will
result in the triplets vmod(truffles, picked) and vmod(shoot, demonstrating, but
should be represented in 4lang by the edges pick 2−→ truffles and shoot 0−→ demonstrate,
respectively. When we extend our tools to handle Hungarian input (see Section 4.7, we add

49

Figure 4.10: 4lang graph built from the sentence The Manitoba Action Committee is
concerned that the privatization of MTS will lead to rate increases.. The dependency
ccomp(concerned, lead) was not processed.

to dep_to_4lang the capability of differentiating between words based on morphological
analysis. English POS-tags are not currently processed, but this feature would make it
straightforward to handle the vmod dependency using two rules, one for gerunds and one
for participle forms. While most of the representations evaluated suffer from multiple
errors, 5 out of 20 sentences were assigned perfect or near-perfect 4lang representations.

4.7 Hungarian

We have created an experimental version of our pipeline for Hungarian, using the NLP li-
brary magyarlanc for dependency parsing and a mapping to 4lang graphs that is sensitive
to the output of morphological analysis, to account for the rich morphology of Hungarian
encoding many relations that a dependency parse cannot capture. We describe the out-
put of magyarlanc and the straightforward components of our mapping in Section 4.7.1.
In Section 4.7.2 we discuss the use of morphological analysis in our pipeline and in Sec-
tion 4.7.3 we present some arbitrary postprocessing steps similar to those described in
Sections 4.5.1 and 4.5.2. Finally, in Section 4.7.4 we discuss the performance and main
issues of the Hungarian subsystem.

50

Figure 4.11: 4lang graph built from the sentence My wife and I have used Western Union
very successfully for almost two years to send money to her family in Ukraine.. Nodes
with dashed edges should have been unified based on coreference resolution.

4.7.1 Dependencies

The magyarlanc library4 (Zsibrita et al., 2013) contains a suite of standard NLP tools for
Hungarian, which allows us, just like in the case of the Stanford Parser, to process raw
text without building our own tools for tokenization, POS-tagging, etc. The dependency
parser component of magyarlanc is a modified version of the Bohnet parser (Bohnet,
2010) trained on the Szeged Dependency Treebank (Vincze et al., 2010). The output of
magyarlanc contains a much smaller variety of dependencies than that of the Stanford
Parser. Parses of the ca. 4700 entries of the NSzT dataset (to be introduced in Section 5.1)
contain nearly 60,000 individual dependencies, 97% of which are covered by the 10 most
frequent dependency types (cf. Table 4.2). We shall first discuss dependencies that can be
handled straightforwardly in the dep_to_4lang framework introduced in Section 4.2.

The dependencies att, mode, and pred, all of which express some form of unary
predication, can be mapped to the 0-edge. subj and obj are treated in the same fashion
as the Stanford dependencies nsubj and dobj. The dependencies from, tfrom, locy,
tlocy, to, and tto encode the relationship of a predicate and an adverb or postpositional
phrase answering the question ‘from where?’, ‘from when?’, ’where?’, ‘when?’, ‘where to?’,
and ‘until when?’, respectively.

4http://www.inf.u-szeged.hu/rgai/magyarlanc

51

http://www.inf.u-szeged.hu/rgai/magyarlanc

att 26.0%
punct 16.1%
coord 15.0%
obl 9.6%
root 7.8%
conj 6.6%
mode 5.0%
det 4.7%
obj 3.7%
subj 2.6%

Table 4.2: Most common dependencies in magyarlanc output

4.7.2 Morphology

Hungarian is a language with rich morphology, and in particular the relationship between
a verb and its NP argument is often encoded by marking the noun phrase for one of 17
distinct cases – in English, these relations would typically be expressed by prepositional
phrases. The Stanford Parser maps prepositions to dependencies and the sentence John
climbed under the table yields the dependency prep_under(table, climb). The Hun-
garian parser does not transfer the morphological information to the dependencies, all
arguments other than subjects and direct objects will be in the OBL relation with the
verb. Therefore we updated the dep_to_4lang architecture to allow our mappings from
dependencies to 4lang subgraphs to be sensitive to the morphological analysis of the
two words between which the dependency holds. The resulting system maps the phrase
a késemért jöttem the knife-POSS-PERS1-CAU come-PAST-PERS1 ‘I came for my
knife’ to FOR(come, knife) based on the morphological analysis of késem, performed by
magyarlanc based on the morphdb.hu database (Trón et al., 2005).

This method yields many useful subgraphs, but it also often leaves uncovered the true
semantic relationship between verb and argument, since nominal cases can have various
interpretations that are connected to their ‘primary’ function only remotely, or not at
all. The semantics of Hungarian suffixes -nak/-nek (dative case) or -ban/-ben (inessive
case) exhibit great variation – not unlike that of the English prepositions for and in, and
the ‘default’ semantic relations FOR and IN are merely one of several factors that must be
considered when interpreting a particular phrase. Nevertheless, our mapping from nominal
cases to binary relations can serve as a strong baseline, just like interpreting English for

52

Dependency Edge
att

w1
0−→ w2mode

pred

subj w1
1−→ w2

obj w1
2−→ w2

from w1
1←− FROM 2−→ w2

tfrom w1
1←− since 2−→ w2

locy
w1

1←− AT 2−→ w2tlocy

to w1
1←− TO 2−→ w2

tto w1
1←− until 2−→ w2

Table 4.3: Mapping from magyarlanc dependency relations to 4lang subgraphs

and in as FOR and IN via the Stanford dependencies prep_for and prep_in. The mapping
from magyarlanc dependencies to 4lang graphs is shown in Table 4.3, nominal cases of
OBL arguments are mapped to 4lang binaries according to Table 4.4.

4.7.3 Postprocessing

Copulars

In the Szeged Dependency Treebank, and consequently, in the output of magyarlanc,
copular sentences will contain the dependency relation pred. Hungarian only requires
a copular verb in these constructions when a tense other than the present or a mood
other than the indicative needs to be marked (cf. Table 4.5). While the sentence in
(1) is analyzed as subj(Ervin, álmos), all remaining sentences will be assigned the
dependencies subj(Ervin, volt) and pred(volt, álmos). The same copular struc-
tures allow the predicate to be a noun phrase (e.g. Ervin tüzoltó ‘Ervin is a firefighter’).
In each of these cases we’d like to eventually obtain the 4lang edge Ervin 0−→ sleepy
(Ervin 0−→ firefighter), which could be achieved in several ways: we might want to
detect whether the nominal predicate is a noun or an adjective and add the att and subj
dependencies accordingly. Both of these solutions would result in a considerable increase
the complexity of the dep_to_4lang system and neither would simplify its input: the
simplest examples (such as (1) in Table 4.5) would still undergo different treatment. With

53

Case Suffix Subgraph
sublative -ra/-re

w1
1←− ON 2−→ w2superessive -on/-en/-ön

inessive -ban/-ben
w1

1←− IN 2−→ w2illative -ba/-be
temporal -kor

w1
1←− AT 2−→ w2adessive -nál/nél

elative -ból/-ből
w1

1←− FROM 2−→ w2ablative -tól/-től
delative -ról/-ről
allative -hoz/-hez/-höz

w1
1←− TO 2−→ w2terminative -ig

causative -ért w1
1←− FOR 2−→ w2

instrumental -val/-vel w1
1←− INSTRUMENT 2−→ w2

Table 4.4: Mapping nominal cases of OBL dependants to 4lang subgraphs

⇓

Figure 4.12: Postprocessing dependencies of a copular sentence

these considerations in mind we took the simpler approach of mapping all pairs of the form
nsubj(x, c) and pred(c, y) (such that c is a copular verb) to the relation subj(x, y)
(see Figure 4.12), which can then be processed by the same rule that handles the simplest
copulars (as well as verbal predicates and their subjects.)

Coordination

Unlike the Stanford Parser, magyarlanc does not propagate dependencies across coordi-
nated elements. Therefore we introduced a simple postprocessing step where we collect
words of the sentence governing a coord dependency, then find for each the words acces-
sible via coord or conj dependencies (the latter connects coordinating conjunctions such
as és ‘and’ to the coordinated elements). Finally, we unify the dependency relations of all

54

(1) Ervin álmos
Ervin sleepy
‘Ervin is sleepy’

(2) Ervin nem álmos
Ervin not sleepy
‘Ervin is not sleepy’

(3) Ervin álmos volt
Ervin sleepy was
‘Ervin was sleepy’

(4) Ervin nem volt álmos
Ervin not was sleepy
‘Ervin was not sleepy’

Table 4.5: Hungarian copular sentences

coordinated elements – Figure 4.13 shows a simple example5

4.7.4 Evaluation and issues

As in the case of the English system, we have randomly chosen 20 sentences to manually
evaluate text_to_4lang on Hungarian data. The source of our sample is the Hungarian
Webcorpus (Halácsy et al., 2004). As before, we shall start by providing some rough
numbers regarding the average quality of the 20 4lang graphs, then proceed to discuss
some of the most typical issues, citing examples from the used sample. 10 of the 20 graphs
were correct 4lang representations, or had only minor errors. An example of a correct
transformation can be seen in Figure 4.15. Of the remaining graphs, 4 were mostly correct
but had major errors, e.g. 1-2 content words in the sentence had no corresponding node,
or several erroneous edges were present in the graph. The remaining 6 graphs had many
major issues and can be considered mostly useless.

When investigating the processes that created the more problematic graphs, nearly
all errors seem to have been caused by sentences with multiple clauses. When a clause
is introduced by a conjunction such as hogy ‘that’ or ha ‘if’, the dependency trees of
each graph are connected via these conjunctions only, i.e. the parser does not assign
dependencies that hold between words from different clauses. We are able to build good
quality subgraphs from each clause, but further steps are required to establish the semantic
relationship between them based on the type of conjunction involved – a process that

5This step introduces erroneous edges in a small fraction of cases: when a sentence contains two or
more clauses that are not connected by any conjunction – i.e. no connection is indicated between them –
a coord relation is added by magyarlanc to connect the two dependency trees at their root nodes.

55

Csengő, vidám, kellemes kacagás hangzott a magasból
Ringing joyful pleasant giggle sound-PST the height-ELA
‘Ringing, merry, pleasant laughter sounded from above’

⇓

⇓

⇓

Figure 4.13: Processing a coordinated sentence

56

requires case-by-case treatment and would even then be non-trivial. An example from our
sample is the sentence in Figure 4.14; here a conditional clause is introduced by a phrase

Örülnénk, ha a konzultációs központok
rejoice-COND-1PL if the consultation-ATT center-PL

közötti kilométerek nem jelentenének
between-ATT kilometer-PL not mean-COND-3PL

az emberek közötti távolságot.
the person-PL between-ATT distance-ACC

‘We’d be glad if the kilometers between consultation centers did not
mean distance between people’

Figure 4.14: Subordinating conjunction

that roughly translates to ‘We’d be glad if...’. Even if we disregard the fact that a full
analysis of how this phrase affects the semantics of the sentence would require some model
of the speaker’s desires – we could still interpret the sentence literally by imposing some
rule for conditional sentences, e.g. that given a structure of the form A if B, the CAUSE
relation is to hold between the root nodes of B and A. Such rules could be introduced
for several types of conjunctions in the future. A further, smaller issue is caused by the
general lack of personal pronouns in sentences: Hungarian is a pro-drop language: if a verb
is inflected for person, pronouns need not be present to indicate the subject of the verb,
e.g. Eszem. ‘eat-1SG’ is the standard way of saying ‘I’m eating’ as opposed to ?Én eszem
‘I eat-1G’ which is only used in special contexts where emphasis is necessary. Currently
this means that 4lang graphs built from these sentences will have no information about
who is doing the eating, but in the future these cases can be handled by a mechanism
that adds a pronoun subject to the graph based on the morphological analysis of the verb.
Finally, the lowest quality graphs are caused by very long sentences containing several
clauses and causing the parser to make multiple errors.

57

1995 telén vidrafelmérést végeztünk
1995 winter-POSS-SUP otter-survey-ACC conduct-PST-1PL
az országos akció keretében.
the country-ATT action frame-POSS-INE
‘In the winter of 1995 we conducted an otter-survey as part of our national campaign’

⇓

Figure 4.15: Example of perfect dep_to_4lang transformation

58

Chapter 5

Building definition graphs

One application of the text_to_lang module is of particular importance to us. By pro-
cessing entries in monolingual dictionaries written for humans we can attempt to build
definition graphs like those in 4lang for practically any word. This section presents the
dict_to_4lang module, which extends the text_to_4lang pipeline with parsers for sev-
eral major dictionaries (an overview of these is given in Section 5.1) as well as some
preprocessing steps specific to the genre of dictionary definitions – these are presented in
Section 5.2. Section 5.3 discusses expansion of 4lang representations, the process of copy-
ing links in definition graphs (both hand-written and built by dict_to_4lang) to 4lang
representations created by text_to_4lang. Finally, Section 5.4 points out several remain-
ing issues with definition graphs produced by the dict_to_4lang pipeline. Applications
of dict_to_4lang, both existing and planned, shall be described in Chapter 6. The en-
tire pipeline is available as part of the 4lang library, implemented by the dict_to_4lang
module1.

5.1 Data sources

We’ve built parsers for three large dictionaries of English and two of Hungarian. Custom
parsers have been built for all five sources and are distributed as part of the 4lang module.

5.1.1 Longman Dictionary of Contemporary English

The Longman Dictionary of Contemporary English (Bullon, 2003) contains ca. 42,000
English headwords. Its definitions are constrained to a small vocabulary, the Longman

1https://github.com/kornai/4lang/blob/master/src/dict_to_4lang.py

59

https://github.com/kornai/4lang/blob/master/src/dict_to_4lang.py

Defining Vocabulary (LDV, (Boguraev & Briscoe, 1989)). The longman_parser tool pro-
cesses the xml-formatted data and extracts for each headword a list of its senses, including
for each the plain-text definition, the part-of-speech tag, and the full form of the word
being defined, if present: e.g. definitions of acronyms will contain the phrase that is ab-
breviated by the headword. No component of 4lang currently makes use of this last field,
AAA will not be replaced by American Automobile Association, but this may change in
the future.

5.1.2 Collins Cobuild Dictionary

The Collins-COBUILD dictionary (Sinclair, 1987) contains over 84 500 headwords. Its
definitions use a vocabulary that is considerably larger than LDOCE, including a large
technical vocabulary (e.g. adularia: a white or colourless glassy variety of orthoclase
in the form of prismatic crystals., rare words (affricare: to rub against), and multiple
orthographic forms (adsuki bean: variant spelling of adzuki bean). Since many definitions
are simply pointers to other headwords, the average entry in Collins is much shorter than
in LDOCE. Given the technical nature of many entries, the vocabulary used by definitions
exhibits a much larger variety: Longman definitions, for the greatest part limited to the
LDV, contain less than 9000 English lemmas, not including named entities, numbers, etc.,
Collins definitions use over 38 000 (these and subsequent figures on vocabulary size are
approximated using the hunmorph analyzer and the morphological databases morphdb.en
and morphdb.hu).

5.1.3 English Wiktionary

Our third source of English definitions, the English Wiktionary at http://en.wiktionary
.org is the most comprehensive database, containing over 128 000 headwords and available
via public data dumps that are updated weekly. Since Wiktionaries are available for many
languages using similar – although not standardized – data formats, it has long been a
resource for various NLP tasks, among them an effort to extend the 4lang dictionary
to 40 languages (Ács et al., 2013). While for most languages datasets such as Longman
and Collins may not be publicly available (e.g. at the time of writing this thesis, both
Hungarian dictionaries were only available to the author based on personal requests),
wiktionaries currently contain over 100 000 entries for nearly 40 languages, and over 10 000
for a total of 76.

60

http://en.wiktionary.org
http://en.wiktionary.org

5.1.4 Dictionaries of Hungarian

We’ve also run the dict_to_4lang pipeline on two explanatory dictionaries of Hungarian:
volumes 3 and 4 of the Magyar Nyelv Nagyszótára (NSzt), containing nearly 5000 head-
words starting with the letter b (Ittzés, 2011)2, and over 120 000 entries of the complete
Magyar Értelmező Kéziszótár (Pusztai, 2003), which has previously been used for NLP
research (Miháltz, 2010). Basic figures for all five datasets are presented in Table 5.1.

Dict headwords av. def. length approx. vocab. size
LDOCE 30 126 11.6 9 000
Collins 82 026 13.9 31 000
en.wikt 128 003 8.4 38 000
EKsz 67 515 5.0 33 700
NSzt (b) 4 683 10.7 9 900

Table 5.1: Basic figures for each dataset

5.2 Parsing definitions

5.2.1 Preprocessing

Before passing dictionary entries to the parser, we match them against some simple pat-
terns that are then deleted or changed to simplify the phrase or sentence without loss
of information. A structure typical of dictionary definitions are noun phrases with very
generic meanings, e.g. something, one, a person, etc. For example, LDOCE defines buffer
as someone or something that protects one thing or person from being harmed by another.
The frequency of such structures makes it worthwhile to perform a simple preprocessing
step: phrases such as someone, someone who, someone, etc. are removed from definitions
in order to simplify them, thus reducing the chance of error in later steps. The above
definition of buffer, for example, can be reduced to protects from being harmed, which
can then be parsed to construct the definition graph protect 1←− FROM 2−→ harm. A similar
step replaced all occurences of the strings a type of and a kind of with a, once again
simplifying both the input of the syntactic parser and the final representation without loss
of information in definitions such as lizard: a type of reptile that has four legs and a long
tail.

2The author gratefully acknowledges editor-in-chief Nóra Ittzés for making an electronic copy available.

61

5.2.2 Constraining the parser

Since virtually all dictionary definitions of nouns are single noun phrases, we constrain the
parser to only allow such analyses for the definitions of all noun headwords. The command-
line interface of the Stanford Parser does not support adding constraints on parse trees,
but the Java API does; we implemented a small wrapper in jython that allowed us to
access the classes and functions necessary to enforce this constraint (see Section 7.4.3 for
more details). This fixes many incorrect parses, e.g. when a defining noun phrase with the
structure in Figure 5.1 could also be parsed as a complete sentence, as in Figure 5.2.

(S
(NP

(NP (DT the) (NN size))
(PP (IN of)

(NP (DT a) (NN radio) (NN wave)))
(VP (VBN used)

(S
(VP (TO to)

(VP (VB broadcast)
(...)))))))

Figure 5.1: Expected parse tree for the definition of wavelength: the size of a radio wave
used to broadcast a radio signal

(S
(NP

(NP (DT the) (NN size))
(PP (IN of)

(NP (DT a) (NN radio) (NN wave))))
(VP (VBD used)

(S
(VP (TO to)

(VP (VB broadcast)
(...))))))

Figure 5.2: Incorrect parse tree from the Stanford Parser for the definition of wavelength:
the size of a radio wave used to broadcast a radio signal

62

5.2.3 Building definition graphs

The output of the – possibly constrained – parsing process is passed to the dep_to_4lang
module introduced in Chapter 4. The ROOT dependency in each parse, which was ignored
in the general case, is now used to identify the head of the definition, which is a hypernym
of the word being defined. This allows us to connect, via a 0-edge, the node of the concept
being defined to the graph built form its definition. We can perform this step safely
because the vast majority of definitions contain a hypernym of the headword as their root
element – exceptions will be discussed in Section 5.4.2.

Dict # graphs av. nodes
LDOCE 24 799 6.1
Collins 45 311 4.9
en.wikt 120 670 5.4
EKsz 67 397 3.5
NSzt 4676 6.4

Table 5.2: Graphs built from each dataset

5.3 Expanding definition graphs

The 4lang dictionary contains by design all words of the Longman Defining Vocabulary
(LDV, (Boguraev & Briscoe, 1989)). This way, if we use dict_to_4lang to define each
headword in LDOCE as a graph over nodes corresponding to words in its dictionary
definition, these graphs will only contain concepts that are defined in the hand-written
4lang dictionary. To take advantage of this, we implement an expansion step in 4lang,
which adds the definition of each concept to a 4lang graph by simply adjoining each
definition graph to G at the node corresponding to the concept being defined. This can
be stated formally as follows:

Definition 1. Given the set of all concepts C, a 4lang graph G with concept nodes
V (G) = c1, c2, . . ., ci ∈ C, a set of definition graphs D, and a lexicon function L : C → D

such that ∀c ∈ C : c ∈ V (L(c)), we define the expansion of G as

G∗ = G ∪
⋃

ci∈L

L(G)

63

Hand-written definitions in the 4lang dictionary may also contain pointers to argu-
ments of the definiendum, e.g. stand is defined as upright 0←− =AGT 1←− ON 1−→ feet,
indicating that it is the agent of stand that is 0−→ upright, etc. Detecting the thematic
role of a verb’s arguments can be difficult, yet we handle the majority of cases correctly
using a simple step after expansion: all edges containing =AGT (=PAT) nodes are moved
to the machine(s) with a 1-edge (2-edge) pointing to it from the concept being defined.
This allows us to create the graph in Figure 5.3 based on the above definition of stand.
Expansion will affect all nodes of graphs built from LDOCE; when processing generic En-
glish text using text_to_4lang we may choose to limit expansion to manually built 4lang
definitions, or we can turn to dictionaries built using dict_to_4lang, allowing ourselves
to add definitions to nearly all nodes. 4lang modules can be configured to select the
approach most suitable for any given application.

5.4 Issues and evaluation

In this section we will describe sources of errors in our pipeline besides those caused by
incorrect parser output (see Section 4.4.1). We shall also present the results of manual
error analysis conducted on a small sample of graphs in an effort to determine both the
average accuracy of our output graphs as well as to identify the key error sources.

5.4.1 Error analysis

To perform manual evaluation of the dict_to_4lang pipeline we randomly selected 20
headwords from the Longman Dictionary3. In one round of evaluation we grouped the
20 definition graphs by quality, disregarding the process that created them. We found
that 11 graphs were perfect or near-perfect definitions (see e.g. Figure 5.4) and a further
4 were mostly accurate, with only minor details missing or an incorrect relation present
in addition to the correct ones. Of the remaining 6 graphs, 2 still encoded several true
relationships, the last 4 were essentially useless. Our sample is too small to conclude that
75% of the graphs we build are of acceptable quality, but these results are nevertheless
promising. Our second round of manual inspection was directed at the entire process of
building the 20 graphs and aimed to identify the source of errors. Out of the 9 graphs
that had errors at all, 6 were clearly caused by parser errors (discussed in Section 4.4.1),
while the other 3 were connected to non-standard definitions (see Section 5.4.2).

3The 20 words in our sample, selected randomly using GNU shuf were the following: aircraft, charac-
teristic, clothesline, contrived, cypress, dandy, efface, frustrate, incandescent, khaki, kohl, lizard, nightie,
preceding, residency, rock-solid, scant, transference, whatsit, Zen

64

Figure 5.3: Expanded graph for A man stands in the door. Nodes of the unexpanded
graph are shown in gray

65

Figure 5.4: Graph constructed from the definition of Zen: a kind of Buddhism from Japan
that emphasizes meditation

5.4.2 Non-standard definitions

Our method for building 4lang definitions can be successful in the great majority of cases
because most dictionary definitions – or at least their first sentences, which is all we make
use of – are rarely complex sentences; in most cases they are single phrases describing the
concept denoted by the headword – a typical example would be the definition of koala:
an Australian animal like a small grey bear with no tail that climbs trees and eats leaves.
It is these kinds of simple definitions that are prevalent in the dictionaries we process
and that are handled quite accurately by both the Stanford Parser and our mapping from
dependencies to 4lang relations.

In some cases, definitions use full sentences to explain the meaning of a word in a more
straightforward and comprehensible way, e.g.:

• playback - the playback of a tape that you have recorded is when you play it on a
machine in order to watch or listen to it

• indigenous - indigenous people or things have always been in the place where they
are, rather than being brought there from somewhere else

• ramshackle - a ramshackle building or vehicle is in bad condition and in need of
repair

66

These sentences will result in a higher number of dependency relations, and consequently a
denser definition graph; often with erroneous edges. In the special case when the Stanford
Parser’s output does not contain the ROOT relation, i.e. the parser failed to identify any
of the words as the root of the sentence, we skip the entry entirely – this affects 0.76% of
LDOCE entries, 0.90% of entries in en.wiktionary. That such definitions are problematic
is also reflected in the fact that earlier editions of the Longman dictionary did not allow
them, using the headword in the definition text was forbidden.

5.4.3 Word senses

As discussed in Section 3.2, the 4lang theory assigns only one definition to each word
form, i.e. it does not permit multiple word senses. All usage of a word must be derived
from a single concept graph. Explanatory dictionaries like the ones listed in Section 5.1
provide several definitions for each word, of which we always process the first one. This
decision is somewhat arbitrary, but produces good results in practice; the first definition
typically describes the most common sense of the word, as in the case of tooth:

1. one of the hard white objects in your mouth that you use to bite and eat food

2. one of the sharp or pointed parts that sticks out from the edge of a comb or saw

We cannot expect to construct from this entry a generic definition such as sharp, one_of_many.
Instead, to capture at a later stage that objects other than those in your mouth could be
instances of tooth, we must turn to the principle that any link in a 4lang definition can
be overridden (see Section 3.2). Not only are we unable to predict the particular subset of
links in the definition of tooth that will be shared across various uses of the word tooth,
we shouldn’t make any such predictions: it is no more than an accident that teeth turned
out to be metaphors for small, sharp objects lined up next to one another and not for e.g.
small, white, cube-shaped objects.

While in most cases the various sense defined for a word are metaphoric uses of the
first, there remain words whose first definition is not generic enough to accommodate all
others even if we assume powerful inferencing capabilities. Consider e.g. the definitions
of shower from LDOCE below:

1. a piece of equipment that you stand under to wash your whole body

2. an act of washing your body while standing under a shower

3. a short period of rain or snow

67

4. a lot of small, light things falling or going through the air together

5. a party at which presents are given to a woman who is going to get married or have
a baby

6. a group of stupid or lazy people

7. to wash your whole body while standing under a shower

8. to give someone a lot of things

9. to scatter a lot of things onto a person or place, or to be scattered in this way

A 4lang definition generic enough so that one could derive at least the majority of
these cases would be most similar to definition #4: showers are occurrences of many
things falling, typically through the air. Understanding the word shower in the context
of e.g. baby showers (#5) would remain a difficult task, including among others that of
understanding that fall may refer to an object changing place not only physically but
also in terms of ownership. In the above LDOCE entry, since we use the first definition
to build the 4lang graph, we lose any chance of recovering any of the meanings #3-6 and
#8-9.

5.4.4 Hungarian

We also conducted manual error analysis on our Hungarian output, in this case choosing 20
random words from the EKsz dictionary. The 20 words, selected once again using shuf, are
the following: állomásparancsnok, beköt, biplán, bugás, egyidejűleg, font, főmufti, hajkötő,
indikál, lejön, munkásőr, nagyanyó, nemtelen, összehajtogat, piff-puff, szét, tipográfus,
túlkiabálás, vakolat, zajszint. The graphs built by dict_to_4lang were of very good
quality (see Figure 5.5 for an example), with only 3 out of 20 containing major errors.
This is partly due to the fact that NSzt contains many very simple definitions, e.g. 4
of the 20 headwords in our random sample contained a (more common) synonym as its
definition.

All 3 significant errors are caused by the same pattern: the analysis of possessive
constructions by magyarlanc involve assigning the att dependency to hold between the
possessor and the possessed, e.g. the definition of piff-puff (see Figure 5.6) will re-
ceive the dependencies att(hang, kifejezés) and att(lövöldözés, hang), resulting
in the incorrect 4lang graph in Figure 5.7 instead of the expected one in Figure 5.8.
kifejezés 0−→ hang 0−→lövöldözés instead of kifejezés 2←− HAS 1−→ hang 2←− HAS 1−→ lövöldözés.

68

Figure 5.5: 4lang graph built from the definition of beköt: Vezetéket a fővezetékbe köt
’cable-ACC the main-cable-ILL tie’

These constructions cannot be handled even by taking morphological analysis into account,
since possessors are not usually marked (although in some structures they receive the da-
tive suffix -nak/-nek, e.g. in embedded possessives like our current example (hangjának
‘sound-POSS-DAT’ is marked by the dative suffix as the possessor of kifejezésére). Unless
possessive constructions can be identified by magyarlanc, we shall require an independent
parsing mechanism in the future. The structure of Hungarian noun phrases can be effi-
ciently parsed using the system described in (Recski, 2014), the grammar used there may
in the future be incorporated into a 4lang-internal parser (see Section 8.4).

Lövöldözés vagy ütlegelés hangjának kifejezésére
Shooting or thrashing sound-POSS-DAT expression-POSS-SUB
‘Used to express the sound of shooting or thrashing’

⇓

Figure 5.6: Dependency parse of the EKsz definition of the (onomatopoeic) term
piff-puff

69

Figure 5.7: Incorrect graph for piff-puff

Figure 5.8: Expected graph for piff-puff

70

Chapter 6

Applications

This chapter presents applications of the 4lang system. Section 6.1 presents our ap-
proaches to measuring semantic similarity between words and sentences using 4lang
graphs, and resulting systems submitted to the Semantic Textual Similarity tasks of two
SemEval conferences1. Section 6.2 presents two early attempts at natural language un-
derstanding systems that use spreading activation over 4lang graphs. The 2014 and 2015
SemEval systems described in Sections 6.1.5 and 6.1.6 are results of joint work with Judit
Ács and Katalin Pajkossy, respectively. The 2012 systems presented in Section 6.2 were
built in cooperation with Dávid Nemeskey and Attila Zséder.

6.1 Semantic similarity

To demonstrate the use for concept graphs built using dict_to_4lang, we participated
in SemEval tasks concerned with measuring semantic similarity. The methods used in
state of the art systems to measure sentence similarity rely heavily on word similarity,
typically derived from word embeddings (see Section 2.4). We demonstrate that a simple
measure of similarity between 4lang graphs is a competitive measure of semantic word
similarity. In the systems we submitted to Semeval competitions in 2015 and 2016 we
combined 4lang similarity with features derived from various word embeddings, lexical
resources like WordNet, and surface forms of words. Our participation in the SemEval
competitions of 2015 and 2016 are described in detail in (Recski & Ács, 2015) and (Recski
& Pajkossy, 2016), respectively.

1 http://alt.qcri.org/semeval2016/

71

http://alt.qcri.org/semeval2016/

Figure 6.1: Instructions for annotators of the STS datasets (Agirre et al., 2012, p.3)

6.1.1 The STS task

The SemEval conferences, which organize shared tasks in various applications of compu-
tational semantics, have featured tracks on Semantic Textual Similarity (STS) every year
since 2012. While the datasets used have changed annually, the task has remained un-
changed in all evaluations: participating systems are expected to measure the degree of
semantic similarity between pairs of sentences. Datasets used in recent years were taken
from a variety of sources (news headlines, image captions, answers to questions posted in
online forums, answers given by students in classroom tests, etc.). Gold annotation was
obtained by crowdsourcing (using Amazon Mechanical Turk), annotators were required to
grade sentence pairs on a scale from 0 to 5; Figure 6.1 shows the instructions they were
given. Inter-annotator agreement was calculated to ensure the high quality of annotations.

6.1.2 Architecture of the MathLingBudapest systems

Our framework for measuring semantic similarity of sentence pairs is based on the sys-
tem of (Han et al., 2013), who were among the top scorers in all STS tasks since 2013
(Kashyap et al., 2014; Han et al., 2015). Their architecture, Align and Penalize, involves
computing an alignment score between two sentences based on some measure of word sim-
ilarity. We have chosen to reimplement this system because it allowed us to experiment
with various measures of word similarity, including those based on 4lang graphs built
by dict_to_4lang, which we shall present in Section 6.1.4. We reimplemented virtually
all rules and components described by (Han et al., 2013) for experimentation but will
now describe only those that ended up in at least one of the 8 configurations submitted to

72

SemEval in 2015 and 2016 (the particular setups are described in Sections 6.1.5 and 6.1.6).
The core idea behind the Align and Penalize architecture is, given two sentences S1

and S2 and some measure of word similarity, to align each word of one sentence with some
word of the other sentence so that the total similarity of word pairs is maximized. The
mapping need not be one-to-one and is calculated independently for words of S1 (aligning
them with words from S2) and words of S2 (aligning them with words from S1). The score
of an alignment is the sum of the similarities of each word pair, normalized by sentence
length, the final score assigned to a pair of sentences is the average of the alignment scores
for each sentence.

In our top-scoring 2015 system, as well as in all configurations in 2016, we used super-
vised learning to establish the weights with which each source of word similarity contributes
to the similarity score assigned to a pair of words. For out-of-vocabulary (OOV) words, i.e.
those that are not covered by the component used for measuring word similarity, we rely
on string similarity: we measure the Dice- and Jaccard-similarities (Dice, 1945; Jaccard,
1912) over the sets of character n-grams in each word for n = 1, 2, 3, 4. Additionally, we
use simple rules to detect acronyms and compounds: if a word of one sentence that is
a sequence of 2-5 characters (e.g. ABC) has a matching sequence of words in the other
sentence (e.g. American Broadcasting Company), all words of the phrase are aligned with
this word and receive an alignment score of 1. If a sentence contains a sequence of two
words (e.g. long term or can not) that appear in the other sentence without a space and
with or without a hyphen (e.g. long-term or cannot), these are also aligned with a score
of 1.

The word similarity component can also be influenced by a boost feature based on
WordNet (Miller, 1995). Scores are assigned if one word is a hypernym of the other, if one
appears frequently in glosses of the other, or if they are derivationally related. For the
exact cases covered and a description of how the boost is calculated, the reader is referred
to (Han et al., 2013).

The similarity score may be reduced by a variety of penalties, which we only enabled
in our submissions for Task 1 of the 2015 SemEval (Semantic Similarity in Twitter) – they
haven’t improved our results on any other dataset. Of the penalties described in (Han et
al., 2013) we only used the one which decreases alignment scores if the word similarity
score for some word pair is very small (< 0.05). For the Twitter tasks in 2015 we also
introduced two new types of penalties based on our observations of error types in Twitter
data: if one sentence starts with a question word and the other one does not or if one
sentence contains a past-tense verb and the other does not, we reduce the overall score by
1/(L(S1) + L(S2)), where L(S1) and L(S2) are the numbers of words in each sentence.

73

6.1.3 Machine learning

In our 2015 submissions our hybrid systems were trained using plain least squares re-
gression on training data available from earlier years. By 2016 we developed a more
sophisticated framework, allowing us to test various ML methods and perform feature
selection.

6.1.4 Word similarity in 4lang

The 4lang-similarity of two words is the similarity between the 4lang graphs defining
them. We developed a measure of graph similarity by testing simple versions directly in
our STS systems described in Section 6.1.2. To define the similarity of two 4lang graphs,
we start by the intuition that similar concepts will overlap in the elementary configura-
tions they take part in: they might share a 0-neighbor, e.g. train 0−→ vehicle 0←− car,
or they might be on the same path of 1- and 2-edges, e.g. park 1←− IN 2−→ town and
street 1←− IN 2−→ town.

For ease of notation we define the predicates of a node as the set of elementary config-
urations it takes part in. For example, based on the definition graph in Figure 3.3, we say
that the predicates of the concept bird (P (bird)) are {vertebrate; (HAS, feather);
(HAS, wing); (MAKE, egg)}. Our initial version of graph similarity is the Jaccard simi-
larity of the sets of predicates of each concept, i.e.

S(w1, w2) = J(P (w1), P (w2)) = |P (w1) ∩ P (w2)|
|P (w1) ∪ P (w2)|

Early experiments lead us to extend the definition of predicates by allowing them to be
inherited via paths of 0-edges, e.g. (HAS, wing) is considered a predicate of all concepts
for which 0−→ bird holds. We have also experimented with similarity measures that take
into account the sets of all nodes accessible from each concept in their respective definition
graph (N(w)). This proved useful in establishing that two concepts which would otherwise
be treated as entirely dissimilar are in fact somewhat related. For example, given the
definitions of the concepts casualty and army in Figure 6.2, the node war will allow us
to assign nonzero similarity to the pair (army, casualty). We found it most effective to
use the maximum of these two types of similarity.

Testing several versions of graph similarity on past years’ STS data, we found that
if two words w1 and w2 are connected by a path of 0-edges, it is best to assign to them
a similarity of 1. This proved very efficient for determining semantic similarity of the
most common types of sentence pairs in the SemEval datasets. Two descriptions of the

74

Figure 6.2: Overlap in the definitions of casualty (built from LDOCE) and army (defined
in 4lang)

same event (common in the headlines dataset) or the same picture (in images) will often
only differ in their choice of words or choice of concreteness. In a dataset from 2014, for
example, two descriptions, likely of the same picture, are A bird holding on to a metal
gate and A multi-colored bird clings to a wire fence. Similarly, a pair of news headlines are
Piers Morgan questioned by police and Piers Morgan Interviewed by Police. wire is by no
means a synonym for metal, nor does being questioned mean exactly the same as being
interviewed, but treating them as perfect synonyms proved to be an efficient strategy for
the purpose of assigning similarity scores that correlate highly with human annotators’
judgments.

The single word similarity score defined above was used as a component in our 2015
STS systems (see Section 6.1.5 for details). In our 2016 architecture (described in Sec-
tion 6.1.3) the machine learning component has direct access to each component of the
4lang similarity score; for each word pair, 4lang returns a set of scores, each of which
serve as individual features. Three of these features are binary: e.g. 1 if the two words
are on the same path of 0-edges and 0 otherwise, three others can take any value between
0 and 1, e.g. the Jaccard-similarity of the sets of predicates for each word; all six features
are listed in Table 6.1. 4lang similarity was calculated separately using each of the three
dictionaries described in Chapter 5, and all three configurations were run with and with-
out expansion of the definition graphs (see Section 5.3). Altogether the 4lang similarity
component returns 3× 2× 6 = 36 features.

75

feature definition
links_jaccard J(P (w1), P (w2))
nodes_jaccard J(N(w1), N(w2))
links_contain 1 if w1 ∈ P (w2) or w2 ∈ P (w1), 0 otherwise
nodes_contain 1 if w1 ∈ N(w2) or w2 ∈ N(w1), 0 otherwise
0_connected 1 if w1 and w2 are on the same directed path of 0-edges, 0 otherwise

Table 6.1: 4lang similarity features (2016)

6.1.5 STS 2015

In 2015 we participated in two SemEval Tasks: Task 1 - Paraphrase and Semantic Sim-
ilarity in Twitter (Xu et al., 2015) involved detecting paraphrases among tweets (Task
1a) and measuring the semantic similarity between them (Task 1b). Task 2 - Semantic
Textual Similarity (Agirre et al., 2015) involved measuring the similarity between sentence
pairs from a variety of sources.

Datasets

In 2015, STS systems were evaluated on a mixed dataset compiled from 5 sources: the
headlines data contained titles of news articles gathered from several sources. The
images dataset contained descriptions of images taken sampled from a set of 1000 images
with 10 descriptions each. Half of sentence pairs were descriptions of the same image, the
other half described different ones. The answers-student dataset contains answers given
by pupils to an automated tutoring system during a session on basic electronics. Pairs
of one-sentence answers were selected based on string similarity. The answers-forums
dataset contains pairs of responses from the StackExchange Q&A website; some pairs are
responses to the same question, others were written in reply to different ones. Finally,
the belief data contains pairs of user comments on online discussion forums. Pairs were
sampled based on string similarity, then annotated and filtered based on inter-annotator
agreement. For details on the origins of each dataset, see (Agirre et al., 2015).

Submissions

For Task 1 we submitted two systems: twitter-embed uses a single source of word simi-
larity, a word embedding built from a corpus of word 6-grams from the Rovereto Twitter
N-Gram Corpus2 using the gensim3 package’s implementation of the method presented in

2http://clic.cimec.unitn.it/amac/twitter_ngram/
3http://radimrehurek.com/gensim

76

embedding hybrid
Task 1a: Paraphrase Identification
Precision 0.454 0.364
Recall 0.594 0.880
F-score 0.515 0.515

Task 1b: Semantic Similarity
Pearson 0.229 0.511

Table 6.2: Performance of submitted systems on Task 1.

embedding machine hybrid
Task 2a: Semantic Similarity

answers-forums 0.704 0.698 0.723
answers-students 0.700 0.746 0.751
belief 0.733 0.736 0.747
headlines 0.769 0.805 0.804
images 0.804 0.841 0.844
mean Pearson 0.748 0.777 0.784

Table 6.3: Performance of submitted systems on Task 2.

(Mikolov, Chen, et al., 2013). Our second submission, twitter-mash combines similarities
based on character ngrams, two word embeddings (built from 5-grams and 6-grams of the
Rovereto corpus, respectively) and the 4lang-based word similarity described in Section
6.1.4. For Task 2 (Semantic Textual Similarity) we were allowed three submissions. The
embedding system uses a word embedding built from the first 1 billion words of the En-
glish Wikipedia using the word2vec4 tool (Mikolov, Chen, et al., 2013). The machine
system uses the word similarity measure described in Section 6.1.4 (both systems use the
character ngram baseline as a fallback for OOVs). Finally, for the hybrid submission we
combined these two systems and the character-similarity.

Evaluation

Our results on each task are presented in Tables 6.2 and 6.3. In case of Task 1a (Paraphrase
Identification) our two systems performed equally in terms of F-score and ranked 30th
among 38 systems. On Task 1b the hybrid system performed considerably better than
the purely vector-based run, placing 11th out of 28 runs. On Task 2 our hybrid system
ranked 11th among 78 systems, the systems using the word embedding and the 4lang-
based similarity alone (with string similarity as a fallback for OOVs in each case) ranked
22nd and 15th, respectively.

4https://code.google.com/p/word2vec/

77

6.1.6 STS 2016

Datasets

Submissions

Evaluation

6.1.7 Difficulties

We have obtained from 4lang graphs a measure of word similarity that we successfully
combine with vector-based metrics to create state of the art STS system, but we cannot
expect our metric to outperform distributional similarity on its own. Here we discuss some
of the more typical issues that we encountered.

Lack of inferencing

Without performing some inference on the concept graphs built from dictionary definitions,
the near-synonyms wizard - a man who is supposed to have magic powers and magician
- a man in stories who can use magic will be assigned a score of only 0.182 by our system;
a higher score is not warranted by the knowledge that both concepts refer to men and that
both have some connection to magic. In this example the task is as difficult as realizing
that the subgraphs X 1←− HAS 2−→ power 0−→ magic and X 1←− CAN 2−→ use 2−→ magic refer to
roughly the same state-of-affairs. This kind of inference is beyond the system as currently
implemented, but well within the capabilities of 4lang, see (Kornai, 2016) for a discussion.

OOVs

Another significant source of errors were out-of-vocabulary words (OOVs). Given the
sources of input data, named entities (e.g. in headlines) and non-standard orthography
(e.g. forums) are often unknown for both word embeddings and 4lang. Character similar-
ity can mitigate these effects significantly, but in the future we must reduce OOV-rates of
all components, e.g. by training embeddings on larger datasets, building 4lang definitions
from additional resources (e.g. the Urban Dictionary) and by improving the quality of
lemmatization.

6.2 Natural language understanding

We now summarize our earliest application of the 4lang representation, a dialogue system
using spreading activation over 4lang-machines, presented in detail in (Nemeskey et al.,

78

2013). Two systems mimicking the actions of a ticket clerk at a Hungarian railway station
(one selling tickets and another responding to timetable inquiries) use Eilenberg-machines
– the formal objects behind 4lang graphs that are viewed as directed graphs of concepts
throughout this thesis – to represent user input at all levels of analysis. Words and chunks
detected in user input are represented by machines, as are entire utterances after process-
ing. User input is first processed by standard tools: a morphological analyzer (Trón et al.,
2005) and an NP chunker (Recski & Varga, 2009). Constructions over machines take over
in the next step, pairing surface structures with arbitrary actions, in this case filling slots
of Attribute Value Matrices (AVMs) with domain-specific fields such as destination5.
For example, when encountering Gödre ‘to Göd’), a noun phrase in sublative case that
also contains the name of a Hungarian town, the destination field can be populated.

Simple rules such as this one are responsible for storing domain-specific knowledge
extracted from user input, but a domain-independent activation of machines corresponding
to 4lang concepts governs the actions taken by the system. For each concept found in the
input, machines are added to the set of active machines and expanded, using either their
4lang definitions (e.g. in the case of ticket) or an external dictionary storing domain-
specific information, e.g. that student and pensioner can be synonyms for half-price
in the context of train tickets. At every iteration of the activation process, concepts are
also activated if all concepts in their definitions are active at the end of the previous
iteration. Other interfaces of the system can activate machines and fill AVMs, e.g. the
location of the user can activate the concepts ticket and schedule), and populate the
ticket-AVM field source with the name of the station (which may later be overridden
based on user input).

The system was built to respond perfectly to ca. 40 real-life dialogues – transcribed by
the author over a 30-minute period at a Budapest railway station and informally referred
to as the MÁV-corpus (MÁV is the largest railroad company in Hungary). Our system
was never formally evaluated with human users, but was presented to the public, spawning
considerable interest (Szedlák, 2012; nyest.hu, 2012). All code is available under an MIT
license from http://www.github.com/kornai/pymachine/, but while most components
of the software are still used by the 4lang module, a working system for serving railroad-
related requests is no longer actively maintained.

5 Construction objects in the pymachine module – a dependency of 4lang– are not introduced in this
thesis, but Section 8.4 will briefly mention some more applications. AVM filling is performed by subtypes
of the Operator class, also not documented here.

79

http://www.github.com/kornai/pymachine/

Chapter 7

System architecture

This chapter describes the main building blocks of the 4lang system. The most up-
to-date version of this document is available under https://github.com/kornai/4lang/
tree/master/doc. Besides introducing the main modules dep_to_4lang (Section 7.3) and
dict_to_4lang (Section 7.4), which were introduced in Chapters 4 and 5 repsectively, this
chapter also describes auxiliary components such as the Lemmatizer and Lexicon classes
(Sections 7.6 and 7.5) as well as some modules of the pymachine library used by 4lang
(Section 7.7). Section 7.2 lists the external dependencies of the 4lang module along with
brief instructions on how to obtain and install them. The purpose of the first section (7.1)
is to make this chapter accessible on its own, those who have read Chapters 3 through 6
of this thesis may safely skip it. Finally, Section 7.8 gives detailed instructions on how to
customize each 4lang tool using configuration files.

7.1 Overview

The 4lang library provides tools to build and manipulate directed graphs of concepts that
represent the meaning of words, phrases and sentences. 4lang can be used to

• build concept graphs from plain text (text_to_4lang)

• build concept graphs from dictionary definitions (dict_to_4lang)

• measure semantic similarity of concept graphs

• (experimental) measure entailment between concept graphs

Both text_to_4lang and dict_to_4lang rely on the Stanford CoreNLP (English) and
the magyarlanc (Hungarian) toolchains for generating dependency relations from text,
which are in turn processed by the dep_to_4lang module.

80

https://github.com/kornai/4lang/tree/master/doc
https://github.com/kornai/4lang/tree/master/doc

The top-level file 4lang contains a manually built concept dictionary, mapping ca.
3000 words to 4lang-style definition graphs. Graphs are specified using a simple human-
readable format, partially documented in (Kornai et al., 2015) (a more complete descrip-
tion is forthcoming). Definitions in the 4lang dictionary can be processed using the
definition_parser module of the pymachine library (see Section 7.7).

The text_to_4lang module takes as its input raw text, passes it to the Stanford
CoreNLP package for dependency parsing and coreference resolution, than calls the
dep_to_4lang module to convert the output into interconnected Machine instances. The
dict_to_4lang tool builds graphs from dictionary definitions by extending the pipeline
with parsers for several machine-readable monolingual dictionaries and some genre-specific
preprocessing steps.

7.2 Requirements

7.2.1 pymachine

the pymachine library is responsible for implementing machines, graphs of machines, and
some more miscellaneous tools for manipulating machines. The library is documented
in Section 7.7. The library can be downloaded from http://www.github.com/kornai/
pymachine and installed by running python setup.py install from the pymachine di-
rectory.

7.2.2 hunmorph and hundisambig

The lemmatizer class in 4lang, documented in Section 7.6 uses a combination of tools,
two of which are the hunmorph open-source library for morphological analysis and the
hundisambig tool for morphological disambiguation. The source code for both can be
downloaded from http://mokk.bme.hu/en/resources/hunmorph/, the pre-built mod-
els for English and Hungarian, morphdb.en and morphdb.hu, are also made available.
Alternatively, pre-compiled binaries for both hunmorph and hundisambig are available
at http://people.mokk.bme.hu/~recski/4lang/huntools_binaries.tgz, they can be
expected to work on most UNIX-based systems. The archive should be extracted in the
4lang working directory, which will create the huntools_binaries directory. If binaries
need to be recompiled, they should also be copied to this directory, or the value of the
parameter hunmorph_path must be changed in default.cfg to point to an alternative
directory.

81

http://www.github.com/kornai/pymachine
http://www.github.com/kornai/pymachine
http://mokk.bme.hu/en/resources/hunmorph/
http://people.mokk.bme.hu/~recski/4lang/huntools_binaries.tgz

7.2.3 Stanford Parser and CoreNLP

4lang runs the Stanford Parser in two separate ways. When parsing dictionary definitions,
the stanford_wrapper module launches the Jython-based module stanford_parser.py,
which can communicate directly with the Stanford Parser API to enforce constraints on
the parse trees (see Section 5.2.2 for details). These modules require the presence of the
Stanford Dependency Parser, which can be obtained from http://nlp.stanford.edu/
software/lex-parser.shtml#Download and the Jython tool, available from http://www
.jython.org/downloads.html. After downloading and installing these tools, all you
need to do is edit the ‘stanford’ and ‘corenlp’ sections of the default configuration file
‘conf/default.cfg’ so that the relevant fields point to your installations of each tool and your
copy of the englishRNN.ser.gz model (details on the config file will be given in Section 7.8).

The text_to_4lang tool, on the other hand, runs parsing as well as coreference resolu-
tion using the Stanford CoreNLP package. To save the overhead of loading multiple models
each time text_to_4lang is run, CoreNLP is run using the corenlp-server tool, which
takes care of downloading CoreNLP, then launching it and keeping it running in the back-
ground, allowing text_to_4lang to pass requests to it continuously. The corenlp-server
tool can be downloaded from https://github.com/kowey/corenlp-server, then in-
structions in its README should be followed to launch the server.

7.3 dep_to_4lang

The core module for building 4lang graphs from text is the dep_to_4lang module which
processes the output of dependency parsers. The text_to_4lang module only con-
tains glue code for feeding raw text to Stanford CoreNLP and passing the output to
dep_to_4lang. The dict_to_4lang module, which parses and preprocesses dictionary
definitions before passing them to CoreNLP, will be described in the next section.

The dep_to_4lang module processes for each sentence the output of a dependency
parser, i.e. a list of relations (or triplets) of the form R(w1, w2), and optionally a list of
coreferences, i.e. indications that a group of words in the sentence all refer to the same
entity (this is currently available for English, using the Stanford Coreference Resolution
system from the CoreNLP library). The configuration passed to the DepTo4lang class
upon initialization must point to a file containing a map from dependencies to 4lang
edges and/or binary relations. For English the default map is the dep_to_4lang.txt file
in the project’s root directory.

The core method of the dep_to_4lang module is
DepTo4lang.get_machines_from_deps_and_corefs, which expects as its parameter not

82

http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://www.jython.org/downloads.html
http://www.jython.org/downloads.html
https://github.com/kowey/corenlp-server

just a list of dependencies but also the output of coreference resolution, which is called
by text_to_4lang but not by dict_to_4lang. This function will ultimately return a
map from surface word forms to Machine instances. To create machines, the function
requires the dependencies to also contain each word’s lemma - for Hungarian data these
are extracted from the output of magyarlanc by magyarlanc_wrapper, for English data
the Lemmatizer module is called (see Section 7.6). Dependency triplets are iterated over,
Machines are instantiated for each lemma, and the apply_dep function is called for each
triple of (relation, machine1, machine2).

The apply_dep function matches such triplets against Dependency instances that have
been created by parsing the dep_to_4lang.txt file containing the mapping from depen-
dency relations to 4lang configurations. In order to handle morphological features in
Hungarian data, these patterns may make reference to the MSD labels of words which have
also been extracted from the magyarlanc output. In case of a match, Operators associ-
ated with the dependency are run on the machines to enforce the specific configurations1.

7.4 dict_to_4lang

The dict_to_4lang module implements the pipeline that builds 4lang graphs from dic-
tionary entries by connecting a variety of dictionary parsers, a module for preprocessing
dictionary entries (EntryPreprocessor), and a custom wrapper for the Stanford Parser
(stanford_parser.py) written in Jython that allows adding custom constraints to the
parsing process. The output from dependency parsers is passed by dict_to_4lang to
dep_to_4lang, the resulting graph of 4lang concepts is used to construct the definition
graph for each headword in the dictionary, which are then saved using the Lexicon class
(see Section 7.5).

7.4.1 Parsing dictionaries

dict_to_4lang supports 5 input data formats:

• an XML version of the Longman Dictionary of Contemporary English

• a typographer’s tape version of the Collins COBUILD Dictionary from the ACL/DCI
dataset (https://catalog.ldc.upenn.edu/LDC93T1)

1We do not document the Operator class, which is used to define complex actions over Machines
that may be sensitive to some input data. In its current state the codebase makes no more use of them
as it does of Machines: they are elaborate structures performing one or two very simple tasks; in this
case, adding edges between machines. They do however play a significant role in the experimental system
presented in Section 6.2 and will likely play a crucial part in 4lang-based parsing (see Section 8.4).

83

https://catalog.ldc.upenn.edu/LDC93T1

• XML dumps of the EnglishWiktionary (https://dumps.wikimedia.org/enwiktionary/)

• an XML version of the Magyar Nyelv Nagyszótára (Hungarian)

• a preprocessed XML format of the Magyar Értelmező Kéziszótár. (Hungarian)

These datasets are processed by the modules longman_parser, collins_parser,
wiktionary_parser, nszt_parser, and eksz_parser, respectively. All except
collins_parser are subclasses of the xml_parser module. Each parser extracts a dic-
tionary containing a list of definitions for each headword, each with part-of-speech tag
(where available), and possibly other data which is not currently used by dict_to_4lang.
Parsers also perform format-specific preprocessing if necessary (e.g. replacing abbreviated
forms of frequent words with their full form in Hungarian definitions). If run as standalone
applications, all five parsers will print their output in human-readable format, useful for
testing.

7.4.2 Preprocessing entries

The output from parsing dictionary data is passed to the EntryPreprocessor module,
which performs various steps that clean and simplify data before it is passed to external
syntactic parsers. This module defines a list of regex patterns to be removed or replaced
in definitions, and each pattern can be associated with one or more flags that are added to
the entry if a replacement took place. It is therefore straightforward to define, given a new
datasource, rules that will e.g. remove the string of person from a definition and simulta-
neously add the flag person to the entry being processed. The preprocessor also performs
sentence tokenization (via nltk.punkt) and by default keeps only the first sentence of the
first definition for each headword (but see Section 7.8 on how to change this).

7.4.3 Parsing definitions

Definitions returned by EntryPreprocessor are passed to one of two external tools for
dependency parsing: the Stanford Parser for English definitions and the magyarlanc
tool for Hungarian, both accessed via the python wrappers stanford_wrapper.py and
magyarlanc_wrapper.py. Both wrappers use the Subprocess module to launch exter-
nal tools; magyarlanc is launched directly and the Stanford Parser is used via a Jython
wrapper.

84

https://dumps.wikimedia.org/enwiktionary/

The Jython wrapper

Since the dict_to_4lang module requires access to the Stanford Parser’s API (see below
for details), a wrapper (stanford_parser.py was written in Jython, a Java implementa-
tion of the Python interpreter that allows direct access to Java classes from Python code.
The Jython module stanford_parser.py is not to be confused with the python module
stanford_wrapper.py: the latter can be imported by any Python application and will
launch a Jython session running the former.

Access to the Stanford Parser API is necessary to pass custom constraints to the
parser before processing sentences, limiting the types of possible parse trees. Currently
this feature is used to enforce that dictionary definitions of nouns get parsed as noun
phrases (NPs). When using the parse_definitions function for parsing, part-of-speech
tags for each entry are passed to the get_constraints function, which returns a list of
ParserConstraint instances – currently a list of length 0 or 1 (more ParserConstraints
can be created from regex Patterns).

7.5 The Lexicon class

The Lexicon class stores 4lang definitions for words, separating the manually written
ones in the 4lang dictionary from those built by the dict_to_4lang module. When
invoked from the command line, Lexicon.py processes the 4lang dictionary (using the
definition_parser module of the pymachine library) and saves the resulting Lexicon
instance in pickle format. dict_to_4lang loads the lexicon built from 4lang, adds def-
initions built from dictionaries, and saves the output. All other applications can load
any of the pickle files to use the corresponding Lexicon instance. Applications typically
use the get_machine function to obtain the 4lang definition graph for some word. By
default, get_machine first searches for definitions of a word in 4lang, then among words
for which graphs have been built automatically, and finally falls back to creating a new
Machine instance with no definition (i.e. no connections to other Machines). The expand
function implements expansion of definitions (see Section 5.3), adding links to all nodes
in a definition taken from their own definitions. Stopwords are omitted by default, the
user can specify other words that are to be skipped. Expansion does not affect definition
graphs stored in the lexicon.

85

7.6 The Lemmatizer class

The Lemmatizer combines various external tools in trying to map words to 4lang concepts.
For each word processed, the lemmatize function invokes the hunmorph morphological
analyzer (using wrappers around ocamorph and hundisambig from the hunmisc library),
as well as the Porter stemmer. lemmatize caches the results of each analysis step, storing
for each word form it encounters the stem (according to the Porter stemmer), the list
of possible morphological analyses (according to ocamorph) and the analysis chosen by
hundisambig. In using all these to select the lemma to be returned, the lemmatize
function supports several strategies for different applications.

If no flags are passed, lemmatize returns the output of hundisambig. The option
defined can be used to pass the list of all lemmas from which lemmatize should try to
return one (e.g. the list of all concepts defined) – if specified, lemmatize will return the
word itself if it is defined, then try the lemma from hundisambig, and then go through all
other lemmas proposed by ocamorph. If no match is found, the stemmed form is tried as
a last resort before returning None. If the flag stemmed_first is set to True, lemmatize
will run the above process on the stem first and only return to the original word form if
no defined lemma is found. If defined is left unspecified and stem_first is set to true
at the same time, lemmatize will act as a plain Porter stemmer, and a warning is issued.
By default, Lemmatizer loads on startup a cache file of previously analyzed words. To
save a new cache file (or overwrite an old one), the program using Lemmatizer must call
its write_cache function.

7.7 The pymachine library

Concept graphs built by 4lang are encoded using the external library pymachine (http://
www.github.com/kornai/pymachine, which implements Eilenberg machines via the Machine
class. Currently 4lang uses these objects simply as graph nodes, not as Eilenberg ma-
chines. pymachine.utils provides, among others, the MachineGraph class for build-
ing, manipulating, (de)serializing and visualizing graphs of Machines. This class relies
on the open-source library networkx as its backend for encoding directed graphs. The
pymachine.definition_parser module provides a parser for the format used by the
4lang dictionary, generation is currently not supported, i.e. graphs created with 4lang
cannot be saved in this format. pymachine also contains several modules that form the
codebase of the system described in (Nemeskey et al., 2013), these are not used by the
4lang library.

86

http://www.github.com/kornai/pymachine
http://www.github.com/kornai/pymachine

7.8 Configuration

All 4lang modules can be configured using standard Python configuration files, command
line parameters have been avoided nearly everywhere. All parameters left unspecified in
the cfg file passed to a module will be set to the values specified in default.cfg. If no
configuration file is passed, defaults are used everywhere, running simple tests for most
modules on data in the test/input directory. Options are documented in default.cfg,
see Appendix A.

87

Chapter 8

Outlook

This chapter outlines our future plans for using 4lang to solve some of the most challenging
tasks in computational semantics. In Section 8.1 we mention some outstanding issues in
the 4lang library which we plan to address in the near future. We shall then proceed
to briefly discuss the tasks of measuring sentence similarity and entailment (Section 8.2),
question answering (Section 8.3), and semantics-based parsing (Section 8.4), arguing that
each of these should be approached via the single generic task of determining the likelihood
of some 4lang representation based on models of context trained on other 4lang graphs
relevant to the task at hand (the context). Our plans for such a generic component are
outlined in Section 8.5.

8.1 Outstanding issues

8.1.1 True homonyms

At present we do not treat multiple entries for the same word, e.g.

• club1: an organization for people who share a particular interest or enjoy similar
activities, or a group of people who meet together to do something they are interested
in

• club2: a long thin metal stick used in golf to hit the ball

• club3: one of the four suits in a set of playing cards, which has the design of three
round black leaves in a group together

In the future these will have to be accommodated by three separate 4lang concepts, at
which point we will have to implement some form of word sense disambiguation process
in our applications.

88

8.1.2 Alternate word forms, synonyms

When processing dictionaries with dict_to_4lang, we do not currently handle defi-
nitions that consist of a single synonym of the headword. Resulting graphs such as
purchase 0−→ buy are adequate representations of meaning, since the 0-edge warrants
inheritence of all links, but explicitly replacing such words with their synonyms may have
its practical advantages. The Collins Dictionary also lists alternate forms of many head-
words, these could also be added to the concept dictionary, e.g. realise could point to the
graph built from the definition of realize. Sometimes dictionaries give identical definitions
for (perfect) synonyms, e.g. Longman defines both vomit and upchuck as to bring food
or drink up from your stomach and out through your mouth because you are ill or drunk.
Such duplicates can be detected to add the edges vomit

0
⇀↽
0

upchuck.

8.2 Sentence similarity and entailment

In Section 6.1 we have introduced a measure of semantic similarity between words based
on their 4lang definitions which helped achieve state of the art performance on the task
of measuring sentence similarity. Most top STS systems find a way to reduce this task
to that of word similarity, where lexical resources such as WordNet and surface features
such as character-based similarity can play an important role. Our current systems are no
exception. We believe that the task of directly quantifying the similarity of two meaning
representations amounts to detecting entailment between parts of such representations.
The nature of the similarity scale (e.g. what it means for two sentences to be 70% similar)
is unclear, but it can be assumed that (i) if two sentences S1 and S2 are perfectly similar
(i.e. mean exactly the same thing), then each of them must entail the other, and (ii) if
S1 and S2 are similar to some extent then there must be exist some substructures of the
meanings of S1 and S2 such that these substructures are perfectly similar, i.e. entail each
other.

The nature of these substructures is less obvious. A straightforward approach is to
consider subgraphs, and assume that similarity of two representations is connected to
the intersection of graphs (i.e. the intersection of the sets of edges over the intersection
of the sets of nodes). For example, the sentences John walks and John runs, when in-
terpreted in 4lang and properly expanded, will map to graphs that share the subgraph
John

0
⇀↽
1

move 1←− INSTRUMENT 2−→ foot. Other common configurations between graphs
can also warrant similarity, e.g. John walks with a stick and John fights with a stick both
map to John

0
⇀↽
1

X 1←− INSTRUMENT 2−→ stick for some X. If our notion of similarity could
refer to shared subgraphs only, no connection could be made between John and stick and

89

these sentences could not be judged more similar to each other than to virtually any
sentence about John or about a stick being an instrument. We are therefore inclined to
include such common templates in determining the similarity of two 4lang graphs – tem-
plates are essentially graphs with some unspecified nodes. The number of such templates
matching a given graph grows exponentially with the number of nodes, but we can expect
the relevant templates to be of limited size and a search for common templates in two
graphs seems feasible1.

If similarity can be defined in terms of common substructures of 4lang graphs, a
definition of entailment can follow that takes into account the substructures in one graph
that are also present in the other. Simply put, John walks entails John moves because
the representation of the latter, John

0
⇀↽
1

move, is contained in that of the former, but
entailment does not hold the other way round, because many edges for John walks are
left uncovered by John moves, e.g. those in move 1←− INSTRUMENT 2−→ foot. Since this
asymmetric relationship between graphs – the ratio of templates in one that are present
in the other – is also of a gradual nature, it is more intuitive to think of it as the extent
to which some utterance supports the other – the term entailment is typically used as a
strictly binary concept. John moves may not entail John walks, it nevertheless supports
it to a greater extent than e.g. John sings.

How similarity and support between 4lang graphs should be measured exactly cannot
be worked out without considerable experimenting (we are trying to approximate human
judgment, as in the case of the STS task in Section 6.1.1), what we argued for here is that
4lang representations are powerful and expressive enough that the semantic relatedness
of utterances can be measured through them effectively.

8.3 Question Answering

In the previous section we discussed the task of measuring the extent to which one utter-
ance supports another – a relationship that differs from entailment in being gradual. A
workable measure of support can take part in question answering: it can be used to rank
candidates in order to determine answers that are more supported by a given context.
There remains the task of finding candidates that are relevant answers to the question

1 The 4lang theory of representing meaning using networks of Eilenberg machines – of which our
graphs are simplifications – will have the machines walk and fight inherit all properties of all machines
to which they have pointers on their 0th partition; in other words they will end up with all properties of
concepts that are accessible through a path of IS_A relationships, and will probably share at least some
very generic properties such as voluntary action. The machine-equivalent of templates could then be
networks of machines whose sets of properties do not necessarily contain the properties of any concept.

90

asked. The text_to_4lang pipeline offers no special treatment for questions. A wh-
question such as Who won the 2014 World Cup are handled by all components in the
same way as indicatives, creating e.g. the edges who 1←− win 2−→ cup. Yes-no questions are
simply not detected as such, Did Germany win the 2014 World Cup and Germany won the
2014 World Cup will map to the same 4lang graph. In the future we plan to experiment
with simple methods for finding candidates: e.g. searching for wh-questions allows us to
identify the template X 1←− win 2−→ cup(...) and match it against graphs already in the
context; we shall discuss how such a context might be modeled in Section 8.5.

8.4 Parsing in 4lang

For the purposes of the 4lang modules and applications presented in this thesis, we relegate
syntactic analysis to dependency parsers. In Section 4.4.1 we have seen examples of errors
introduced by the parsing component, and in sections on evaluation we observed that they
are in fact the single greatest source of errors in most of our applications. Our long-term
plans for the 4lang library include an integrated module for semantics-assisted parsing.
Since most of our plans are unimplemented (with the exception of some early experiments
documented in (Nemeskey et al., 2013)), here we shall only provide a summary of our
basic ideas.

Since generic parsing remains a challenging task in natural language processing, many
NLP applications rely on the output of chunkers for high-accuracy syntactic information
about a sentence. Chunkers typically identify the boundaries of phrases at the lowest
level of the constituent structure, e.g. in the sentence A 61-year old furniture salesman
was pushed down the shaft of a freight elevator they would identify the noun phrases [A
61-year old furniture salesman], [the shaft], and [freight elevator]. Since chunking can
be performed with high accuracy across languages ((Kudo & Matsumoto, 2001; Recski
& Varga, 2009)), and some of our past experiments suggest that the internal syntactic
structure of chunks can also be detected with high accuracy (Recski, 2014), our first goal
for 4lang is to detect phrase-internal semantic relations directly.

The aim of parsing with 4lang is to make the process sensitive to (lexical) semantics.
Currently the phrase blue giraffe would be mapped to the graph giraffe 0−→ blue on
the basis of the dependency relation amod(giraffe, blue), warranted by a particular
fragment of the parse-tree, something along the lines of [NP [A blue] [N giraffe]], which
is again constructed with little or no regard to the semantics of blue or giraffe. The
architecture we propose would still make use of the constituent structure of phrases, but
it would create a connection between blue giraffe and giraffe 0−→ blue by means of a

91

construction that pairs the rewrite rule NP → A N with the operation that adds the 0-
edge between the concepts corresponding to the words blue and giraffe2.

Since many dependency parsers, among them the Stanford Parser used by dict_to_4lang,
derive their analyses from parse trees using template matching, it seems reasonable to as-
sume that a direct mapping between syntactic patterns and 4lang configurations can also
be implemented straightforwardly. The task of ranking competing parse trees can then
be supplemented by some module that ranks 4lang representations by likelihood; what
likelihood means and how such a module could be designed is discussed in Section 8.5.
Thus, the problem of resolving ambiguities such as the issue of PP-attachment discussed
in Section 4.4.1, e.g. to parse the sentence He ate spaghetti with meatballs, becomes
no more difficult then predicting that eat 2−→ meatball is significantly more likely than
eat 1←− INSTRUMENT 2−→ meatballs. Since we plan to make such predictions based on statis-
tics over 4lang representations seen previously, our approach can be seen as the semantic
counterpart of data-oriented parsing (Bod, 2008), a theory that estimates the likelihood
of syntactic parses based on the likelihood of its substructures, learned from structures in
some training data.

8.5 Likelihood of 4lang representations

We have proposed the notion of support, the extent to which parts of one utterance entail
parts of another, in Section 8.2, and we have also indicated in Section 8.3 that we require a
model of context that allows us to measure the extent to which the context supports some
utterance. Finally, in Section 8.4, we argued that a method for ranking 4lang (sub)graphs
by the extent to which the context supports them could be used to improve the quality
of syntactic parsing and thereby reduce errors in the entire text_to_4lang pipeline. We
shall refer to this measure as the likelihood of some 4lang graph (given some context);
we conclude this chapter by presenting our ideas for the design of a future 4lang module
that models context and measures likelihood. Given a system capable of comparing the
likelihoods of competing semantic representations, we will have a chance of successfully
addressing more complex tasks in artificial intelligence, such as the Winograd-schema
Challenge (Levesque et al., 2011).

In Section 8.2 we introduced 4lang templates – sets of concepts and paths of edges
between them – as the structures shared by 4lang graphs that are semantically related.

2As mentioned in Section 3.1, the directed graphs used throughout this thesis are simplifications of
our formalism; the constructions in 4lang actually map surface patterns to operations over Eilenberg-
machines, in this case one that places a pointer to a blue machine on the 0th partition of a giraffe
machine

92

Templates are more general structures than subgraphs, two graphs may share many tem-
plates over a set of nodes in spite of having only few shared edges; a previous example
was the pair of sentences John walks with a stick and John fights with a stick, sharing
the template John

0
⇀↽
1

X 1←− INSTRUMENT 2−→ stick. Our initial approach is to think of
the likelihood of some graph as some product of the likelihood of matching templates,
given a model of the context. We believe that both the likelihood of templates in some
context and the way they can be combined to obtain the likelihood of an utterance should
be learned from the set of 4lang graphs associated with the context. E.g. if we are to
establish the likelihood of the utterance Germany won the 2014 World Cup and the con-
text is a set of 4lang graphs obtained by processing a set of newspaper articles on sports
using text_to_4lang, our answer should be based on (i) the frequency of templates in
the target 4lang graph, as observed in the set of context graphs and (ii) our knowledge
of how important each template is, e.g. based on their overall frequency in the context or
among all occurrences over their sets of nodes3.

In theory there is an enormous number of templates to consider over some graph
(doubly exponential in the number of nodes), but the search space can be effectively
reduced in a fashion similar to the way standard language modeling reduces the space of
all possible word sequences to that of trigrams. If e.g. we consider templates of no more
than 4 nodes, and we use expansion to reduce all graphs to some form of ‘plain English’
with a vocabulary no greater than 105 (in (Kornai et al., 2015) we have shown that an even
greater reduction is possible, by iterative expansion 4lang representations can be reduced
to 131 primitives, possibly fewer), then the number of node sets will remain in the 1015

range, and while the total number of theoretically possible 4lang graphs over 4 nodes is
as high as 26(4

2) ≈ 1012, we cannot expect to observe more than a fraction of them: the
present 4lang architecture in itself determines a much smaller variety.

Note that templates likely to occur in data are also mostly meaningful: e.g. templates
over the graph for Germany won the 2014 World Cup are representations for states-of-
affairs such as ‘Germany won a 2014 something’ (Germany 1←− win 2−→ X 0−→ 2014), ‘some-
body won a world cup’ (X 1←− win 2−→ cup 0−→ world), or ‘Germany did something to a world
something’ (Germany 1←− X 2−→ Y 0−→ world) – our proposed parameters are the likelihoods
of each of these parameters based on what we’ve learned from previous experience.

What we outlined here are merely directions for further investigation – the exact ar-
3 At this point we must note that likelihood is not (directly related to) truth; in fact none of our

previous discussions leading up to this notion makes reference to truth. Neither do we suggest that
calculating likelihood can take the place of inference – a context may entail or contradict an utterance
regardless of how likely the latter is; our notion is rather motivated by the various applications discussed
in this chapter.

93

chitecture, the method of learning (including reduction of the parameter space) need to
be determined by experiments, as does the question of how far such an approach can scale
across many domains, genres, and large amounts of data. Our purpose was once again to
argue for the expressiveness of 4lang representations, and to indicate our plans for future
research in computational semantics.

94

Appendices

95

Appendix A

Configuration file of the 4lang
module

#When loading some cfg file in a 4lang module, unspecified parameters are
#assigned default values from this file
#Wherever possible, these values correspond to the most typical settings and
#test datasets distributed with 4lang

#Stanford Parser
[stanford]
#may in the future support using remote servers for parsing, leave it False for now
remote = False

#full path of Stanford Parser directory
dir = /home/recski/projects/stanford_dp/stanford-parser-full-2015-01-30/

#name of parser JAR file
parser = stanford-parser.jar

#name of model to load
model = englishRNN.ser.gz

#full path of jython executable
jython = /home/recski/projects/jython/jython

#Stanford CoreNLP
[corenlp]
#name of Java class to load
class_name = edu.stanford.nlp.pipeline.StanfordCoreNLP

#full path of Stanford CoreNLP directory
#CAUTION: when you change this path to point to your download, make sure it
#still ends with /*

96

classpath = /home/recski/projects/stanford_coreNLP/stanford-corenlp-full-2015-04-20/*

[magyarlanc]
path = magyarlanc/magyarlanc-2.0.jar

#miscellaneous data
[data]
#directory to save output of dependency parsing
deps_dir = test/deps
#directory for temporary files
tmp_dir = test/tmp

#dictionary data
[dict]
#input format
#possible values are: longman, collins, wiktionary, eksz, nszt
input_type = longman

#path to input file
input_file = test/input/longman_test.xml

#path to JSON file containing parsed dictionary entries
output_file = test/dict/longman_test.json

#text_to_4lang options
[text]
#path to input data
input_sens = test/input/mrhug_story.sens

#set to True to perform expansion on graphs built from text
expand = False

#set True to print dot files for each sentence
print_graphs = True

#path to save dot files
graph_dir = test/graphs/text

#if True, only dependency parsing will run and its output saved, but 4lang
#graphs won’t be built. Useful when working with large datasets.
parse_only = False

#path to save output of parsers
deps_dir = test/deps/text

97

#options to control which definitions are included by dict_to_4lang
[filter]

#include multiword expressions
keep_multiword = False

#include words with apostrophes
keep_apostrophes = False

#discard all but the first definition of each headword
first_only = True

[lemmatizer]
#full path of hunmorph binaries and models
hunmorph_path = /home/recski/sandbox/huntools_binaries

#path of cache (loaded but not updated by default, see docs)
cache_file = data/hunmorph_cache.txt

#options related to 4lang graphs
[machine]
#file containing 4lang dictionary
definitions = 4lang

#extra data for 4lang, currently not in use
plurals = 4lang.plural
primitives = 4lang.primitive

#pickle file to load 4lang graphs from
definitions_binary = data/machines/4lang.pickle

#pickle file to save 4lang graphs
definitions_binary_out = test/machines/wikt_test.pickle

#pickle file to save expanded 4lang graphs
expanded_definitions = test/machines/wikt_test_expanded.pickle

#path of directory for printing dot graphs
graph_dir = test/graphs/wikt_test

[deps]
#path to the map from dependencies to 4lang edges
dep_map = dep_to_4lang.txt
#language of the mapping (en or hu)
lang = en

98

#options for testing the word similarity module
[word_sim]
4langpath = /home/recski/sandbox/4lang
definitions_binary = %(4langpath)s/data/machines/longman_firsts.pickle
dep_map = %(4langpath)s/dep_to_4lang.txt
graph_dir = %(4langpath)s/data/graphs/sts
batch = true

#options for experimental sentence similarity system
[sim]
similarity_type = word_test
word_test_data = ws_data/wordsim_similarity_goldstandard.txt
graph_dir = test/graphs/sts_test
deps_dir = test/deps/sts_test

#options for experimental question answering system
[qa]
input_file = test/input/clef_qa_sample.xml
output_file = test/qa/clef_qa_sample.answers
graph_dir = test/graphs/qa_test
deps_dir = test/deps/qa_test

99

References

Ács, J., Pajkossy, K., & Kornai, A. (2013). Building basic vocabulary across 40 languages.
In Proceedings of the sixth workshop on building and using comparable corpora (pp.
52–58). Sofia, Bulgaria: ACL.

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M., Gonzalez-Agirre, A., . . . Wiebe,
J. (2015). SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish
and Pilot on Interpretability. In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015). Denver, CO, U.S.A..

Agirre, E., Cer, D., Diab, M., & Gonzalez-Agirre, A. (2012). SemEval-2012 Task 6:
A Pilot on Semantic Textual Similarity. In First Joint Conference on Lexical and
Computational Semantics (*SEM) (pp. 385–393). Montréal, Canada: Association
for Computational Linguistics.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., . . . Schnei-
der, N. (2013). Abstract meaning representation for sembanking. In Proceedings
of the 7th Linguistic Annotation Workshop and Interoperability with Discourse (pp.
178–186). Sofia, Bulgaria: Association for Computational Linguistics. Retrieved
from http://www.aclweb.org/anthology/W13-2322

Bobrow, R. J. (1979a). The RUS natural language parsing framework. Research in Natural
Language Understanding, annual report.

Bobrow, R. J. (1979b). Semantic interpretation in PSI-KLONE. Research in Natural
Language Understanding, annual report.

Bod, R. (2008). The data-oriented parsing approach: Theory and application. Springer.
Boguraev, B. K., & Briscoe, E. J. (1989). Computational Lexicography for Natural Lan-

guage Processing. Longman.
Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contradiction.

In Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010) (pp. 89–97). Beijing, China: Coling 2010 Organizing Committee.

Bolinger, D. (1965). The atomization of meaning. Language, 555–573.
Brachman, R., & Levesque, H. (1985). Readings in knowledge representation. Morgan

100

http://www.aclweb.org/anthology/W13-2322

Kaufman Publishers Inc., Los Altos, CA.
Brachman, R. J., Fikes, R. E., & Levesque, H. J. (1983). KRYPTON: A functional

approach to knowledge representation. IEEE Computer , 10 , 67–73.
Brachman, R. J., & Schmolze, J. G. (1985). An overview of the KL-ONE knowledge

representation system. Cognitive science, 9 (2), 171–216.
Bullon, S. (2003). Longman dictionary of contemporary English 4. Longman.
Collobert, R., & Weston, J. (2008). A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning (pp. 160–167). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1390156.1390177 doi:
10.1145/1390156.1390177

DeMarneffe, M.-C., MacCartney, W., & Manning, C. (2006). Generating typed depen-
dency parses from phrase structure parses. In Proceedings of the 5th International
Conference on Language Resources and Evaluation (LREC) (Vol. 6, pp. 449–454).
Genoa, Italy.

De Marneffe, M.-C., & Manning, C. D. (2008). Stanford typed dependencies manual [Com-
puter software manual]. Retrieved from http://nlp.stanford.edu/software/
dependencies_manual.pdf (Revised for the Stanford Parser v. 3.5.1 in February
2015)

Dice, L. R. (1945). Measures of the amount of ecologic association between species.
Ecology, 26 (3), 297–302.

Eilenberg, S. (1974). Automata, languages, and machines (Vol. A). Academic Press.
Fillmore, C. J. (1977). Scenes-and-frames semantics. In A. Zampolli (Ed.), Linguistic

structures processing (pp. 55–88). North Holland.
Foland Jr, W. R., & Martin, J. H. (2015). Dependency-based semantic role labeling using

convolutional neural networks. In Proceedings of the Fourth Joint Conference on
Lexical and Computational Semantics (pp. 279–288).

Grefenstette, E., & Sadrzadeh, M. (2015). Concrete models and empirical evaluations
for the categorical compositional distributional model of meaning. Computational
Linguistics, 41 (1), 71–118.

Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and philos-
ophy, 14 (1), 39–100.

Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I., & Trón, V. (2004). Creating
open language resources for Hungarian. In Proceedings of the 4th International
Conference on Language Resources and Evaluation (LREC2004) (pp. 203–210).

Han, L., Kashyap, A., Finin, T., Mayfield, J., & Weese, J. (2013). UMBC_EBIQUITY-

101

http://doi.acm.org/10.1145/1390156.1390177
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf

CORE: Semantic textual similarity systems. In Proceedings of the 2nd Joint Con-
ference on Lexical and Computational Semantics (pp. 44–52).

Han, L., Martineau, J., Cheng, D., & Thomas, C. (2015). Samsung: Align-and-
Differentiate Approach to Semantic Textual Similarity. In Proceedings of the 9th
International Workshop on Semantic Evaluation (SemEval 2015) (pp. 172–177).
Denver, Colorado: Association for Computational Linguistics.

Harris, Z. S. (1954). Distributional structure. Word, 10 , 146–162.
Hobbs, J. R. (1990). Literature and cognition (No. 21). Center for the Study of Language

(CSLI).
Ittzés, N. (Ed.). (2011). A magyar nyelv nagyszótára III-IV. Akadémiai Kiadó.
Jaccard, P. (1912). The distribution of the flora in the alpine zone. New phytologist,

11 (2), 37–50.
Kamp, H. (1981). A theory of truth and semantic representation. In J. Groenendijk,

T. Jansen, & M. Stokhof (Eds.), Formal methods in the study of language (pp. 277–
322). Amsterdam: Mathematisch Centrum.

Karpathy, A., Joulin, A., & Li, F. F. F. (2014). Deep fragment embeddings for bidirectional
image sentence mapping. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
& K. Weinberger (Eds.), Advances in neural information processing systems 27 (pp.
1889–1897). Curran Associates, Inc.

Kashyap, A., Han, L., Yus, R., Sleeman, J., Satyapanich, T., Gandhi, S., & Finin, T.
(2014). Meerkat Mafia: Multilingual and Cross-Level Semantic Textual Similarity
Systems. In Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014) (pp. 416–423). Dublin, Ireland: Association for Computational
Linguistics and Dublin City University.

Katz, J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39 ,
170–210.

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics (pp.
423–430).

Kornai, A. (2010). The algebra of lexical semantics. In C. Ebert, G. Jäger, & J. Michaelis
(Eds.), Proceedings of the 11th Mathematics of Language Workshop (pp. 174–199).
Springer.

Kornai, A. (2012). Eliminating ditransitives. In P. de Groote & M.-J. Nederhof (Eds.),
Revised and Selected Papers from the 15th and 16th Formal Grammar Conferences
(pp. 243–261). Springer.

Kornai, A. (2016). Truth or dare. In C. Condoravdi (Ed.), Lkf.

102

Kornai, A. (in preparation). Semantics. Retrieved from http://kornai.com/Drafts/
sem.pdf

Kornai, A., Ács, J., Makrai, M., Nemeskey, D. M., Pajkossy, K., & Recski, G. (2015).
Competence in lexical semantics. In Proceedings of the fourth joint conference on lex-
ical and computational semantics (pp. 165–175). Denver, Colorado: Association for
Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/
S15-1019

Kornai, A., & Makrai, M. (2013). A 4lang fogalmi szótár. In A. Tanács & V. Vincze
(Eds.), IX. Magyar Számitógépes Nyelvészeti Konferencia (pp. 62–70).

Kudo, T., & Matsumoto, Y. (2001). Chunking with support vector machines. In Pro-
ceedings of the second meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL 2001) (pp. 1–8).

Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., & Jurafsky, D. (2011).
Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011 shared
task. In Proceedings of the Fifteenth Conference on Computational Natural Language
Learning: Shared Task (pp. 28–34).

Levesque, H. J., Davis, E., & Morgenstern, L. (2011). The winograd schema challenge. In
Aaai spring symposium: Logical formalizations of commonsense reasoning.

Liu, F., Flanigan, J., Thomson, S., Sadeh, N., & Smith, N. A. (2015). Toward abstractive
summarization using semantic representations. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (pp. 1077–1086). Denver, Colorado: Association for
Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/
N15-1114

Miháltz, M. (2010). Semantic resources and their applications in Hungarian natural lan-
guage processing (Doctoral dissertation, Pázmány Péter Catholic University). Re-
trieved from https://itk.ppke.hu/uploads/articles/163/file/Mihaltz_diss
.pdf

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. In Y. Bengio & Y. LeCun (Eds.), Proceedings of the
ICLR 2013.

Mikolov, T., Yih, W.-t., & Geoffrey, Z. (2013). Linguistic regularities in continuous space
word representations. In Proceedings of NAACL-HLT 2013 (pp. 746–751).

Miller, G. A. (1995). Wordnet: a lexical database for English. Communications of the
ACM , 38 (11), 39–41.

Montague, R. (1970a). English as a formal language. In R. Thomason (Ed.), Formal

103

http://kornai.com/Drafts/sem.pdf
http://kornai.com/Drafts/sem.pdf
http://www.aclweb.org/anthology/S15-1019
http://www.aclweb.org/anthology/S15-1019
http://www.aclweb.org/anthology/N15-1114
http://www.aclweb.org/anthology/N15-1114
https://itk.ppke.hu/uploads/articles/163/file/Mihaltz_diss.pdf
https://itk.ppke.hu/uploads/articles/163/file/Mihaltz_diss.pdf

philosophy (Vol. 1974, pp. 188–221). Yale University Press.
Montague, R. (1970b). Universal grammar. Theoria, 36 , 373–398.
Montague, R. (1973). The proper treatment of quantification in ordinary English. In

R. Thomason (Ed.), Formal philosophy (pp. 247–270). Yale University Press.
Moser, M. (1983). An overview of NIKL, the new implementation of KL-ONE. Research

in Knowledge Representation and Natural Language Understanding, 7–26.
Nemeskey, D., Recski, G., Makrai, M., Zséder, A., & Kornai, A. (2013). Spreading

activation in language understanding. In Proc. CSIT 2013 (pp. 140–143). Yerevan,
Armenia: Springer.

Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. (2015). A review of relational
machine learning for knowledge graphs: From multi-relational link prediction to
automated knowledge graph construction. arXiv preprint arXiv:1503.00759 .

nyest.hu. (2012). Miből lesz a robot-MÁV-pénztáros. Nyelv és Tudomány. Retrieved from
http://www.nyest.hu/hirek/mobol-lesz-a-robbot-mav-penztaros

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank: An annotated
corpus of semantic roles. Computational linguistics, 31 (1), 71–106.

Pan, X., Cassidy, T., Hermjakob, U., Ji, H., & Knight, K. (2015, May–June). Unsuper-
vised entity linking with abstract meaning representation. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (pp. 1130–1139). Denver, Colorado: As-
sociation for Computational Linguistics. Retrieved from http://www.aclweb.org/
anthology/N15-1119

Peng, X., Song, L., & Gildea, D. (2015). A synchronous hyperedge replacement grammar
based approach for AMR parsing. In Proceedings of CoNLL 2015 (p. 32).

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word
representation. In Conference on Empirical Methods in Natural Language Processing
(EMNLP 2014).

Pust, M., Hermjakob, U., Knight, K., Marcu, D., & May, J. (2015). Parsing English
into Abstract Meaning Representation using syntax-based machine translation. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2015) (p. 1143-1154).

Pusztai, F. (Ed.). (2003). Magyar értelmező kéziszótár. Akadémiai Kiadó.
Quillian, M. R. (1968). Word concepts: A theory and simulation of some basic semantic

capabilities. Behavioral Science, 12 , 410–430.
Quillian, M. R. (1969). The teachable language comprehender. Communications of the

ACM , 12 , 459-476.

104

http://www.nyest.hu/hirek/mobol-lesz-a-robbot-mav-penztaros
http://www.aclweb.org/anthology/N15-1119
http://www.aclweb.org/anthology/N15-1119

Recski, G. (2014). Hungarian noun phrase extraction using rule-based and hybrid methods.
Acta Cybernetica, 21 , 461–479.

Recski, G., & Ács, J. (2015). MathLingBudapest: Concept networks for semantic sim-
ilarity. In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015) (pp. 543–547). Denver, Colorado: Association for Computational
Linguistics.

Recski, G., & Borbély, G. (2016). Building concept graphs from monolingual dictionary
entries. (to appear at LREC2016)

Recski, G., Borbély, G., & Bolevácz, A. (2016). Building definition graphs using mono-
lingual dictionaries of Hungarian. In A. Tanács & V. Vincze (Eds.), XI. Mag-
yar Számitógépes Nyelvészeti Konferencia [11th Hungarian Conference on Compu-
tational Linguistics].

Recski, G., & Pajkossy, K. (2016). MathLingBudapest: Measuring semantic similarity
using 4lang definitions. (to be submitted to Semeval-2016)

Recski, G., & Varga, D. (2009). A Hungarian NP Chunker. The Odd Yearbook. ELTE
SEAS Undergraduate Papers in Linguistics, 87–93.

Richards, I. (1937). The philosophy of rhetoric. Oxford University Press.
Sinclair, J. M. (1987). Looking up: an account of the COBUILD project in lexical com-

puting. Collins ELT.
Smith, R. (2015). Aristotle’s logic. In E. N. Zalta (Ed.), The Stanford encyclopedia of

philosophy (Summer 2015 ed.). http://plato.stanford.edu/archives/sum2015/
entries/aristotle-logic/.

Socher, R., Bauer, J., Manning, C. D., & Ng, A. Y. (2013). Parsing with compositional
vector grammars. In The 51st Annual Meeting of the Association for Computational
Linguistics (ACL 2013).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. (2013).
Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing (pp. 1631–1642). Seattle, Washington, USA: Association for Computational
Linguistics.

Sondheimer, N. K., Weischedel, R. M., & Bobrow, R. J. (1984). Semantic interpretation
using KL-ONE. In Proceedings of the 10th International Conference on Computa-
tional Linguistics and 22nd annual meeting of the Association for Computational
Linguistics (pp. 101–107).

Sultan, M. A., Bethard, S., & Sumner, T. (2015). DLS@CU: Sentence similarity from word
alignment and semantic vector composition. In Proceedings of the 9th International

105

http://plato.stanford.edu/archives/sum2015/entries/aristotle-logic/
http://plato.stanford.edu/archives/sum2015/entries/aristotle-logic/

Workshop on Semantic Evaluation (SemEval 2015) (pp. 148–153). Denver, Colorado:
Association for Computational Linguistics.

Szedlák, A. (2012). Felsögödig kérek egy ilyen nyugdijas. Origo Techbázis. Retrieved
from http://www.origo.hu/techbazis/20120928-felsogodig-kerek-egy-ilyen
-nyugdijas-robot-mavpenztarost-epit-a-sztaki.html

Travis, C. (1997). Pragmatics. In B. Hale & C. Wright (Eds.), A companion to the
philosophy of language. Oxford: Blackwell.

Trón, V., Gyepesi, G., Halácsy, P., Kornai, A., Németh, L., & Varga, D. (2005). Hun-
morph: open source word analysis. In M. Jansche (Ed.), Proceedings of the ACL
2005 software workshop (pp. 77–85). Ann Arbor: ACL.

Trubetzkoy, N. S. (1958). Grundzüge der Phonologie. Vandenhoeck & Ruprecht.
Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: a simple and general

method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics (pp. 384–394).

Vanderwende, L., Menezes, A., & Quirk, C. (2015). An AMR parser for English, French,
German, Spanish and Japanese and a new AMR-annotated corpus. In Proceedings
of NAACL-HLT (pp. 26–30).

Vincze, V., Szauter, D., Almási, A., Móra, G., Alexin, Z., & Csirik, J. (2010). Hungarian
dependency treebank. In Proceedings of the Seventh Conference on International
Language Resources and Evaluation (LREC’10).

Wilks, Y. A. (1978). Making preferences more active. Artificial Intelligence, 11 , 197–223.
Xu, W., Callison-Burch, C., & Dolan, W. B. (2015). SemEval-2015 Task 1: Paraphrase

and semantic similarity in Twitter (PIT). In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval).

Zhu, X., Guo, H., & Sobhani, P. (2015). Neural networks for integrating compositional
and non-compositional sentiment in sentiment composition. In Proceedings of the
Fourth Joint Conference on Lexical and Computational Semantics (pp. 1–9). Denver,
Colorado: Association for Computational Linguistics.

Zimmermann, T. E. (1999). Meaning postulates and the model-theoretic approach to
natural language semantics. Linguistics and Philosophy, 22 , 529–561.

Zsibrita, J., Vincze, V., & Farkas, R. (2013). magyarlanc: A toolkit for morphological
and dependency parsing of Hungarian. In Proceedings of RANLP (pp. 763–771).

Zweig, G., Platt, J. C., Meek, C., Burges, C. J., Yessenalina, A., & Liu, Q. (2012).
Computational approaches to sentence completion. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics (pp. 601–610). Jeju Island,
Korea: Association for Computational Linguistics.

106

http://www.origo.hu/techbazis/20120928-felsogodig-kerek-egy-ilyen-nyugdijas-robot-mavpenztarost-epit-a-sztaki.html
http://www.origo.hu/techbazis/20120928-felsogodig-kerek-egy-ilyen-nyugdijas-robot-mavpenztarost-epit-a-sztaki.html

	Introduction
	Main contributions

	Theories of word meaning
	Katz and Fodor's semantics
	Graph-based models of semantics
	Quillian's Semantic Memory Model
	The KL-ONE family
	Abstract Meaning Representations

	Montague-style theories
	CVS representations
	Vectors as word representations
	Vectors beyond the word level

	The 4lang system
	The formalism
	Nodes
	The 0-edge
	1- and 2-edges

	Ambiguity and compositionality
	Reasoning
	Extra-linguistic knowledge
	Primitives of representation
	Theoretical significance

	Phrases
	Dependency parsing
	From dependencies to graphs
	Utterances
	Issues
	Parsing errors
	Relationships among clauses

	Postprocessing dependencies
	Coordination
	Copulars and prepositions

	Evaluation
	Hungarian
	Dependencies
	Morphology
	Postprocessing
	Evaluation and issues

	Building definition graphs
	Data sources
	Longman Dictionary of Contemporary English
	Collins Cobuild Dictionary
	English Wiktionary
	Dictionaries of Hungarian

	Parsing definitions
	Preprocessing
	Constraining the parser
	Building definition graphs

	Expanding definition graphs
	Issues and evaluation
	Error analysis
	Non-standard definitions
	Word senses
	Hungarian

	Applications
	Semantic similarity
	The STS task
	Architecture of the MathLingBudapest systems
	Machine learning
	Word similarity in 4lang
	STS 2015
	STS 2016
	Difficulties

	Natural language understanding

	System architecture
	Overview
	Requirements
	pymachine
	hunmorph and hundisambig
	Stanford Parser and CoreNLP

	dep_to_4lang
	dict_to_4lang
	Parsing dictionaries
	Preprocessing entries
	Parsing definitions

	The Lexicon class
	The Lemmatizer class
	The pymachine library
	Configuration

	Outlook
	Outstanding issues
	True homonyms
	Alternate word forms, synonyms

	Sentence similarity and entailment
	Question Answering
	Parsing in 4lang
	Likelihood of 4lang representations

	Appendices
	Configuration file of the 4lang module
	References

